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Chapter 1
Introduction

1.1 Motivation

Water waves and currents which are found in the mightiest oceans as well as
in the smallest streams, greatly influence our environment and man-made
structures. From early civilizations to the modern age, surface water waves
and currents in oceans and seas have been of great practical importance
to our lives due to their impact on coastal defenses and structures, off-
shore structures and ship dynamics. The study of surface water waves and
currents is one of the oldest topics in fluid dynamics or hydrodynamics.

The near shore (or coastal) and offshore regions of seas and oceans are
particularly important because they have been the traditional locations for
trade and natural resources. Typical examples of man-made structures are
ports, harbors, ships, wind turbines and oil platforms. Both regions are
often affected by storm surges induced by tropical cyclones and sometimes
by extreme flood waves due to tsunami’s. These natural disasters cause ex-
treme wave conditions which can severely damage the coastal defenses and
structures, and even flood the hinterland. In July 2005, a semi-submersible
oil platform named “Thunder Horse” was found listing as shown in Fig. 1.1
after hurricane Dennis has passed through that region. Recent hurricanes,
such as Katrina and Rita, and the tsunami caused by an earthquake in
Indian Ocean further highlight the severe damage and flooding that may
occur due to such natural disasters.
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Figure 1.1: A semi-submersible oil platform, Thunder Horse, was found
listing after hurricane Dennis had passed through the region in 2005. Pho-
tographed by U.S. Coast Guard.
Courtesy: http://commons.wikimedia.org/wiki.

For the purpose of coastal and offshore structure design and for safe
modes of operation in their vicinity, it is desirable to have information not
only on extreme waves but also in normal wave conditions. Furthermore,
for the safety of coastal inhabitants, it is essential to forecast the flood in-
undation caused by storm surges or tsunami’s. Improving such forecasts
will help to define rescue and recovery operations, and will also help to min-
imize the damage inflicted on coastal installations. Thus, there is a great
need for accurate prediction of water waves in seas and flood inundation in
coastal regions.

Wave conditions in the interested areas of seas and oceans are estimated
in two ways: developing a wave climate 1 of the area and then modeling the
different waves. A typical approach in establishing the wave climate at any
particular location of the sea is to use long-term wave measurements from
wave gauges at selected locations and then developing hindcast models to

1 Wave climate is defined as the general condition of the sea state at a particular
location, its principal elements are wave height, wave period and wave direction.

http://commons.wikimedia.org/wiki.
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forecast a synthetic wave climate. In general, however, limited wave data
are available to determine the wave climate and an extensive gauging pro-
gram would thus be required. Furthermore, if the bathymetry is complex
and strong currents are present then the gauge data tend to be site specific
and can not be readily interpolated or extrapolated. Considering such lim-
itations and drawbacks, modeling waves becomes an effective approach for
estimating the wave conditions in seas and the flood inundation in coastal
regions.

Figure 1.2: Wave basin at MARIN, Wageningen, The Netherlands. Indi-
vidual controllable segments of the wave maker are clearly visible in the
foreground.
Source:http://www.marin.nl

Modeling the effects of waves is done by a combination of physical and
mathematical modeling. Physical modeling usually involves conducting ex-
periments on a smaller scale. Experiments in a wave basin, shown in Fig.
1.2, at the Maritime Research Institute Netherlands (MARIN) are typical
examples of physical modeling. Such experiments are now becoming more
and more complicated and often mathematical modeling is required to de-
sign and control the experimental setup. Mathematical modeling of waves
is carried out by developing a numerical method for waves and simulating

http://www.marin.nl
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the waves for several time periods on computers. In coastal and offshore
engineering, it was not feasible to conduct such numerical simulations un-
til recently because of the large computational costs involved, the lack of
high level accuracy, or both. This has motivated us to aim at developing
numerical methods for simulating waves in seas and oceans which help to
estimate the wave conditions efficiently and accurately.

1.2 Water waves and currents

Figure 1.3: Typical waves at a beach: We can clearly see the formation of
white bubbly regions due to the wave breaking phenomena.

Water waves actually carry energy. It is carried along the ocean surface
through the motion of water particles and mostly dissipated at the shore,
which can be seen in the form of breaking waves (see Fig. 1.3). As waves
approach from offshore to near shore, the water depth h gradually decreases
(Fig. 1.4). In this process, the wave length λ gradually decreases towards
the shore. Based on the water depth and wave length, water waves can
be characterized as shallow and deep water waves when h/λ < 1/20 and
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Figure 1.4: Sketch of a typical cross section of the sea.

h/λ > 1/2, respectively. Water currents are a unidirectional flow of water
and some examples are long shore currents, flood currents, rip currents and
oceanic currents.

In fluid dynamics, the governing equations of motion are the Navier-
Stokes and Euler equations for a viscous and inviscid fluid, respectively.
In wave hydrodynamics, we often assume that the water is incompressible
and inviscid fluid, and thus we can obtain the Euler equations of motion for
incompressible fluid. Moreover, for deep water waves, we can in addition
assume the flow to be irrotational and introduce a velocity potential to sim-
plify the Euler equations to the free surface gravity water wave equations.
This set of equations consists of a potential flow equation with dynamic
and kinematic boundary conditions at the free surface. On the contrary,
for shallow water waves, we can neglect the vertical dependence of the fluid
flow and average over the depth of the water column to obtain the depth-
averaged shallow water equations. However, the shallow water equations
include horizontal circulation.

The depth-averaged shallow water equations describe the near shore hy-
drodynamics while the free surface gravity water wave equations describe
the offshore hydrodynamics. The main difficulty in solving this set of equa-
tions, analytically or numerically, is that the free boundary position is not
known a priori and must be determined as part of the solution to the gov-
erning equations. To be precise, in the shallow water equations, it is the
shore line boundary that the solution depends on. In the free surface grav-
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ity water wave equations, it is the free surface boundary that continuously
evolves in time and depends on the solution of the velocity of the water
particles at the free surface. Because of the moving boundaries, it is a
challenging task to develop an efficient and accurate numerical scheme for
these sets of governing equations.

1.3 Research objectives

The main objective of the present research is to develop a stable, effi-
cient and accurate numerical scheme for simulating shallow and deep water
waves, which is also capable of dealing with deforming grids. Next , we re-
view some existing methods, discuss the steps in the numerical modeling
and set the important milestones to be achieved in two areas: modeling
shallow and deep water waves.

1.3.1 Modeling shallow water waves

The shallow water equations from a hyperbolic system of conservation laws
for mass and momentum takes into account the effects of topography and
the Earth’s rotation (see Pedlosky [47]). Because of their nonlinear hyper-
bolic nature, they can admit discontinuous solutions such as bores or jumps.
These can be treated as the mathematical abstraction of three dimensional
wave breaking phenomena. They can also exhibit flooding and drying as
a result of the movement of the shore line boundary. Furthermore, they
satisfy additional conservation laws for energy, potential vorticity and en-
strophy in smooth regions of the wave field. However, in the presence of
discontinuities, they dissipate energy and may generate potential vorticity.
Peregrine [48] has theoretically investigated such vorticity generation due
to non-uniformity of bores.

A classical numerical approach to model the shallow water equations is
the finite volume method, originally developed for problems in gas dynamics
(see LeVeque [36, 37] and Bouchut [13]). The finite volume method is
obtained by integrating the system of conservation laws over each cell of the
tessellated flow domain and solving for the cell averaged values, or “means”,
of the flow field across each control volume of the cell. From many years,
researchers and engineers have applied the finite volume method to shallow
water flows and some of the successful applications can be found in Audusse



1.3 Research objectives 9

et al. [6], Audusse and Bristeau [7] and Bouchut et al. [14]. In particular,
Audusse and Bristeau [7] have applied this method to deal with flooding and
drying in river flows through a hydrostatic reconstruction of the slope of the
water depth to predict the shore line boundary position. Thus, the basic
finite volume scheme is a computationally efficient numerical technique to
model the shallow water flows but it is first order accurate. They can be
extended to second order accuracy but then the computational efficiency
is lost due to gradient reconstruction. Further, they can not accurately
predict the shore line movement due to the cell averaged values used in the
data representation.

Another class of well-known numerical methods in fluid and gas dy-
namics are discontinuous Galerkin finite element methods. A discontinu-
ous Galerkin (DG) finite element method is typically obtained through a
weak formulation of the system of conservation laws and by discretizing it
using a polynomial approximation of the flow field. This numerical method
can be classified into two main classes: space and space-time discontinu-
ous Galerkin finite element methods. Their classification is based on the
approximation of the fluid flow field using polynomials in space and space-
time, respectively. A survey on discontinuous Galerkin methods can be
found in Cockburn [19], and Cockburn et al. [20].

In the space discontinuous Galerkin finite element method, the weak for-
mulation of the governing equations for fluid flow is discretized in space and
an explicit numerical scheme, like Runge-Kutta time integration schemes,
is considered with a CFL (Courant-Friedrichs-Lewy) condition (see Cock-
burn and Shu [21, 22]). The resulting space DG finite element scheme has
several advantages such as,

(i) the scheme is suitable for parallel implementation because the data
communication is local, in the sense that the solution in each element
is dependent only on its neighboring elements via the flux through
element boundaries; and

(ii) the scheme is suitable for hp adaptivity, i.e., the fluid flow field ap-
proximation can arbitrarily vary per element (known as“p” adaptiv-
ity) or/and the mesh can be locally refined (called “h” adaptivity).

The space discontinuous Galerkin finite element method has already
been developed for shallow water equations by Tassi et al. [57] and Bokhove
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[11]. Moreover, Bokhove [11] has successfully extended this numerical
scheme to the complicated phenomenon of flooding and drying. The key
feature of this approach is that the flow field is approximated with linear
polynomials in which the zeroth order term (mean) is used to conserve
mass and momentum, while the first order term (slope) is used to track
the shore line boundary in an arbitrary Eulerian Lagrangian (ALE) way.
The application of the scheme was restricted to numerical examples in one
dimension but an algorithm is also proposed for two dimensions in Bokhove
[12]. The space DG finite element method is slightly disadvantageous to
deal with deforming grids, since the time step will depend on the quality of
the deforming grid due to a CFL condition and the flow field approximation
needs to be constantly adapted to the deforming grids.

The space-time discontinuous Galerkin finite element method is orig-
inally developed for the incompressible Euler equations by van der Vegt
and van der Ven [64]. In this method, the space-time domain is tessel-
lated into space-time elements. The fluid flow field is approximated on
the space-time elements which is used to discretize the weak formulation
in space-time. The finite element discretization of the weak formulation
results in a set of nonlinear algebraic equations which are solved by inte-
grating in a pseudo time dimension until a steady state is reached. This
method has all the advantages of the space DG method and several added
advantages, especially for deforming grids, such as

(i) the flow field approximation need not be adapted with respect to the
deforming grids because it is automatically updated in the pseudo-
time dimension;

(ii) the moving boundaries can be tracked in both space and time itera-
tively.

(iii) the method is conservative on moving and deforming grids (see van
der Vegt and van der Ven [64]).

Because of these advantages, we aim to develop a space-time discontinuous
Galerkin finite element method for the shallow water equations over varying
bottom topography, including Coriolis effects, and to capture the flooding
and drying phenomena.

To achieve this goal, we propose the following intermediate milestones:
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1. Develop a novel space-time discontinuous Galerkin scheme for the
shallow water equations for both fixed and deforming grids. The goal
is to capture the shallow water waves and currents accurately without
considering the flooding and drying phenomena.

2. Extensively verify and validate the space-time discontinuous Galerkin
finite element scheme for a number of demanding test cases, such as
the inclusion of deforming grids due to the presence of a wave maker.

3. Extend the space-time discontinuous Galerkin finite element scheme
to flooding and drying in shallow water waves and currents.

1.3.2 Modeling deep water waves

The free surface gravity water wave equations consist of a velocity potential
flow equation supplemented with a dynamic and a kinematic boundary
condition at the free surface. The potential flow equation is linear and
elliptic in nature, where as, the dynamic and kinematic boundary conditions
are nonlinear and hyperbolic in nature. This set of equations can also be
derived using Luke’s variational principle [39]. The beauty of a variational
principle is that the complete physics of the problem can be described with
a single functional and it follows the conservation of energy (see Miles [45]
and Milder [46]). Another aspect of this variational principle is that the
variational formulation can be considered as the basis for a finite element
discretization and have the benefits of preserving energy at the discrete
level.

Finite element methods based on a variational principle for free surface
waves are developed in the works of Bai and Kim [8], Kim and Bai [28]
and Kim et al. [29]. Classical numerical methods such as finite element
methods for three dimensional nonlinear free surface waves are relatively
new and can be found in the works of Cai et al. [18], Ma et al. [41, 42], Ma
and Yan [43] and Westhuis [68], Wu and Taylor [70], and Wu and Hu [71].

In the discontinuous Galerkin finite element framework, the DG meth-
ods for elliptic problems proposed by Arnold et al. [5] and Brezzi [15]
have enabled researchers to model free surface water waves using a space
discontinuous Galerkin method. The space DG finite element method for
three dimensional free surface wave problems can be found in van der Vegt
and Tomar [63] and Tomar and van der Vegt [59]. Van der Vegt and Xu
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[65] have subsequently proposed a space-time DG method for three dimen-
sional nonlinear free surface waves, but its numerical scheme is tested only
for two dimensional nonlinear free surface waves. The novelty of this nu-
merical method is the coupling of the free surface boundary conditions to
the space-time DG weak formulation through a flux at the free surface.

The advantages of the space-time discontinuous Galerkin method, men-
tioned in the previous section, have motivated us to use this method also for
free surface gravity water waves. However, the development of the space-
time DG method for nonlinear free surface waves has two main difficulties:

(i) It is non-trivial to develop an efficient solution technique for the non-
linear algebraic equations as the governing equations are elliptic on
the flow domain and hyperbolic on the free surface.

(ii) It is a complicated matter to handle the grid deformation in the four
dimensional computational space-time domain due to the nonlinearity
of the free surface evolution.

Therefore, we first consider the development of a space-time DG finite
element method for linear free surface waves.

In the present work, we aim to develop an efficient and accurate numer-
ical scheme for three dimensional linear free surface waves using a space-
time DG finite element method. We also aim to extend this numerical
method based on Luke’s variation principle. To achieve these goals we set
the following intermediate milestones:

1. Develop a space-time discontinuous Galerkin scheme for three dimen-
sional linear free surface waves.

2. Investigate and implement efficient and accurate numerical solvers for
the linear algebraic system of equations resulting from the space-time
DG discretization.

3. Extend the space-time DG method for linear free surface waves based
on Luke’s variational principle.

1.4 Outline

The outline of this thesis is as follows: In Chapter 2, we present a novel
space-time discontinuous Galerkin method for shallow water waves. To
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deal with discontinuities, we apply a dissipation operator locally around
discontinuities with the help of a discontinuity detector. We conduct a
discrete Fourier analysis of the numerical scheme to investigate the stability,
dispersion and dissipation of the numerical scheme. We also show that our
numerical scheme satisfies the rest state at the discrete level.

In Chapter 3, we verify and validate our numerical results for a number
of examples arising in geophysical flows and hydrodynamics. At first, we
compare the numerical results with some available exact solutions of ideal-
ized problems and verify the order of accuracy. We also test the dissipation
operator combined with the discontinuity detector for the exact solutions
with discontinuities. Next, we verify the dispersion and dissipation error of
the numerical scheme using a discrete Fourier analysis. With the nonlinear
numerical scheme, we also simulate low amplitude linear harmonic waves
such as Poincare and Kelvin waves in a rectangular and circular basin, and
qualitatively compare them with the exact solutions. In order to validate
the bore-vortex anomaly, i.e., vorticity is generated along a non-uniform
bore, we simulate two idealized test cases in which a uniform bore passes
over a non-uniform topography. We show that the potential vorticity is
generated confirming the bore-vortex anomaly. Finally, we show an exam-
ple where high amplitude waves are generated by a linear wave maker to
demonstrate the capability of our numerical scheme in dealing with deform-
ing grids.

In Chapter 4, we present a space-time discontinuous Galerkin method
for linear free surface gravity water waves. First, we present the discretiza-
tion of the linear free surface gravity water wave equations which leads to
a linear system of algebraic equations with a compact stencil. Second, we
develop a space-time DG method based on a discrete version of Luke’s vari-
ational formulation for linear free surface waves. We then discuss efficient
implementation techniques to build and solve the linear system of equations
resulting from the discontinuous Galerkin discretizations. Finally, we verify
our numerical scheme both against linear free surface harmonic waves in a
periodic domain and linear free surface waves generated by a wave maker.

In Chapter 5, we present conclusions and recommendations for future
research.





Chapter 2
Space-time Method for
Shallow Water Waves

2.1 Introduction

For waves and currents in oceans, coastal zones and rivers with small depth
and small vertical velocity scales relative to typical horizontal scales, the
hydrodynamics can be studied using (rotating) shallow water equations
[47]. These equations are a two dimensional hyperbolic system modeling
the depth and the depth-averaged horizontal velocities for an incompressible
fluid. Due to this hyperbolic nature, discontinuities can develop in the form
of bores or hydraulic jumps. They exist as weak solutions [60] and are con-
sidered, in near-shore hydrodynamics, as mathematical analogs of the three
dimensional wave breaking observed at beaches. The shallow water wave
model is one of the simplest models to capture natural wave phenomena
such as run-up and backwash of the shoreline at beaches, coastal waves and
tides, and floods induced by hurricanes and tsunamis. These phenomena
usually take place in a complex shaped domain with a combination of fixed
and freely moving boundaries, where the moving boundaries are due to the
movement of the shoreline. To cope accurately with these complexities, we
present a space-time discontinuous Galerkin method for simulating shal-
low water waves on a dynamic spatial grid. The free boundary treatment
is left to the future study but as a preliminary step we consider moving
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boundaries due to a wave maker (see also [11]).

The space-time discontinuous Galerkin method (Van der Vegt and Van
der Ven [64]) can accurately model inviscid compressible fluid flows in a
time dependent flow domain. In this method, we tessellate the space-time
domain with space-time finite elements and on such an element we define
the local basis functions to approximate the flow field and test functions.
As a result, the space-time weak formulation results in element volume and
face integrals per space-time element. Communication between elements
arises via a numerical flux. There are several choices of numerical fluxes;
here we have chosen the HLLC flux because it is accurate and efficient
compared with other approximate Riemann solvers (see [9], [64] and [57]).
This HLLC flux results in an upwind flux in the time direction ensuring
the causality of time.

The finite element discretization of the weak formulation results in a set
of coupled non-linear algebraic equations per space-time element. These
equations are then solved locally by adding a pseudo-time derivative and
integrating in pseudo-time until a steady state is reached. We use the five-
stage second-order accurate Runge-Kutta time integration scheme defined
in [64]. The convergence acceleration of the pseudo-time integration scheme
towards steady state can be quite slow without special attention, yet at
a reasonable computation time compared to explicit space DG schemes.
However, we have left the implementation of a multi-grid algorithm ([64],
[44]) to accelerate the convergence of the pseudo-time integration as future
work.

Numerically, spurious oscillations are expected to appear only around
hydraulic jumps or bores. To limit these spurious oscillations, a dissipation
operator of Jaffre et al. [26] is added to the discretization, as in Van der
Vegt and Van der Ven [64] which operates everywhere but very mildly in
smooth regions and strongly around discontinuities. In contrast, we apply
the dissipation operator where the discontinuity detector of Krivodonova
et al. [33] informs us to apply it. This more strongly preserves the higher
order accuracy in smooth regions and suppresses the spurious oscillations
around discontinuities.

The crucial difference between space and space-time DG methods is
that in the latter case time is also treated with a finite element instead
of a finite difference method. Further, space and time are treated in uni-
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son with space-time basis functions, here polynomials in space and time.
Preservation of non-negative or positive water depth has received a lot of
attention in finite-volume modelling (e.g. [7]). It has the disadvantage that
even when land must fall dry, it will always stay covered with “numerical”
water. This may lead to a robust scheme but effectively leads to mass loss.
Bokhove [11] therefore only ensures positive mean depths in an element,
but does allow the slope of the depth to indicate where dry regions may
appear in a space discontinuous Galerkin method. Problematic (e.g., in
[11]) is the finite difference discretization in time, which only allows a wet
region with positive depth to become a region with negative depth after
one (intermediate) time step. The space-time method has the advantage
of a finite element method in which the water line is known in space and
time1.

Novel is that the space-time discontinuous Galerkin method is presented
for rotating shallow water waves over varying bottom topography in fixed
and time dependent flow domains. To preserve the hydrostatic balance of
the rest state over arbitrary topography, and uniform flow of water over a
flat bottom, at the discrete level, we approximate the topography smoothly
with a linear polynomial basis based on a nodal approximation per element.
Discrete Fourier analysis of the present numerical method for linear rotating
shallow water equations in one dimension is carried out to show that the
method is unconditionally stable and has minimal dispersion error and
dissipation.

In this chapter, we present the shallow water equations, their conser-
vation laws and the generation of potential vorticity (PV) by non-uniform
bores are discussed in §2.2. The space-time discontinuous Galerkin finite
element method in a time dependent computational domain is presented
in §2.3. A discrete Fourier analysis and the persistence of the steady rest
state over smooth topography are shown in §2.4.

1By combining local mesh adaptation and a non-negative approach in pseudo-time, we
aim to deal much more accurately with flooding and drying. Initial tests are encouraging
[2].



18 Chapter 2: Space-time Method for Shallow Water Waves

2.2 Rotating shallow water flows

2.2.1 Mathematical model

The rotating shallow water equations in the conservative form are (see [47]):

∇ · Fi(U) = Si in Ω ⊂ R
2, (2.1)

where ∇ = (∂t, ∂x, ∂y)
T is the differential operator, U = (h, hu, hv)T the

state vector, h(x) the water depth, u(x) = (u(x), v(x))T the depth-averaged
velocity field,




F0(U)
F1(U)
F2(U)



 =





h hu hv
hu hu2 + gh2/2 huv
hv huv hv2 + gh2/2



 the flux tensor,

(

S0, S1, S2

)T
=

(

0, fhv − gh∂xhb − CDu|u|,−fhu − gh∂yhb − CDv|u|
)T

the source vector, g the gravitational acceleration, f the Coriolis parameter,
hb(x̄) the bottom topography, CD the Chezy’s friction coefficient, |u| =√

u2 + v2 and x = (t, x̄) = (t, x, y) the space-time coordinates. Finally,
we complete the system (2.1) with inflow, outflow or solid wall boundary
conditions at the boundary ∂Ω ⊂ R and initial conditions U(0, x̄).

For numerical calculations, we non-dimensionalize the equations with
typical length L, time T , depth H, and velocity V scales as

t′ = t/T, x̄′ = x̄/L, h′ = h/H, h′
b = hb/H, f ′ = f T and u′ = u/V, (2.2)

where V =
√

gH and T = L/
√

gH. Substituting (2.2) in (2.1) and dropping
the primes, the non-dimensionalized shallow water equations effectively be-
come (2.1) with g = 1, f → fT and CD → CDL/H.

2.2.2 Conservation laws

The shallow water equations (2.1) govern the conservation of mass and
momentum of the system. In the absence of discontinuities, the shallow
water equations conserve energy, absolute vorticity and enstrophy:

∂t





Ẽ
hΠ
hQ



 + ∇̄ ·





(Ẽ + gh2/2)u
huΠ
huQ



 = 0, in Ω ⊂ R
2, (2.3)
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Figure 2.1: A sketch of a bore along with stream lines (left), a contour C,
and traces of the upstream and downstream flow field at the bore (right).

where the energy

Ẽ(x) := h|u|2/2 + gh2/2 + ghhb, (2.4)

potential vorticity Π(x) := (Ωv + f)/h, absolute vorticity Ωv(x) = ∂xv −
∂yu, potential enstrophy Q(x) := Π2/2, and ∇̄ := (∂x, ∂y)

T . Furthermore,
combining 2.1 and 2.3 gives that potential vorticity is materially conserved,
i.e.,

∂tΠ + u · ∇̄Π = 0 in Ω. (2.5)

2.2.3 Bore-vortex anomaly

We concisely write (2.1) as ∂tU + ∇̄ · F(U) = S with U the temporal
and F(U) the spatial part of the flux vector F . The shallow water equa-
tions (2.1) admit discontinuities in the form of tidal bores in coastal seas
or hydraulic jumps in river channels, or may develop discontinuities in fi-
nite time from smooth initial data as bores formed due to wave breaking
phenomena. These discontinuities are weak solutions of the conservation
law ∂tU+ ∇̄ ·F(U) = 0. For smooth topography, they satisfy the Rankine-
Hugoniot relations [36] given by

[[n̄ · F(U) − VnU]] = [[S]] = 0, (2.6)

where n̄ is the unit space normal vector at point x̄c on the discontinuity
curve pointing from 1 to 2, as in Fig. 2.1, Vn = V · n̄ the normal velocity
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of the discontinuity, V = (Vx, Vy)
T the velocity of the discontinuity and [[·]]

the jump defined as [[q]] := q1 − q2 with q1 = limǫ↓0 q(t, x̄c − ǫn̄) and q2 =
limǫ↓0 q(t, x̄c+ǫn̄) the traces of q taken from either side of the discontinuity.
Applying (2.6) for the mass and momentum conservation laws (2.1), we
obtain the following jump relations across the bore ([55, 66]):

[[h(u · n̄ − Vn)]] = 0 and [[h(u · n̄)(u · n̄ − Vn) +
1

2
gh2]] = 0. (2.7)

Introducing the normal velocity of water particles relative to the moving
bore as û = u · n̄ − Vn and solving the relations (2.7), we obtain

Q2 := (h1û1)
2 = (h2û2)

2 = gh1 h2 (h1 + h2)/2 (2.8)

with h1 and h2 the depths adjacent to the bore, and discharge Q across.

In the presence of discontinuities, the jump relations of the energy,
vorticity and enstrophy conservation laws are not satisfied and hence they
are not conserved. Instead, for the energy conservation law in (2.3), if we
evaluate the left-hand side of the Rankine-Hugoniot relation (2.6) then we
obtain the rate of energy dissipation across the bore as (see also Lamb [35]
and Stoker [56])

QED = [[(Ẽ + gh2/2)(u · n̄) − VnẼ]] = gQ(h2 − h1)
3/(4h1h2) (2.9)

with ED the energy dissipation per unit discharge across the bore. To ob-
tain the physically meaningful solution, we have to assume that the energy
dissipation QED > 0 for h1 6= h2, since the energy flux [[(Ẽ + gh2/2)(u · n̄)]]
through the bore should always be greater than [[VnẼ]] the rate of change
of energy at the bore. Further, for uniqueness, we have to assume that the
water particles crossing the bore should always lose energy [56]. Hence, for
Q > 0 we have h1 < h2 and for Q < 0 we have h1 > h2, since we must
have QED > 0. This is the energy dissipating condition analogous to the
entropy condition for shocks in gas dynamics.

Peregrine [48] shows that the jump in PV [[Π]] = Π1 −Π2 can be calcu-
lated by modification of Kelvin’s circulation theorem to obtain

[[Π]] = ∆Π = − 1

Q

dED

dŷ
(2.10)
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with local coordinates x̂ = (x̂, ŷ)T and ŷ aligned along the tangent of the
bore.

Hence, if there was no PV in the water undisturbed by the bore then Π2

is the new nonzero PV when Q > 0 and, vice versa, Π1 is the new nonzero
PV when Q < 0.

Bühler [17] shows that only PV anomalies can be generated by bores,
such that the total PV remains the same in the absence of sources or sinks of
PV other than the bores and hydraulic jumps. In the numerical simulations,
we qualitatively verify the generation of PV due to non-uniform energy
dissipation along the bore.

2.3 Space-time DG finite element model

2.3.1 Space-time tessellation

The space-time flow domain E is defined as

E := {(t, x̄)|x̄ ∈ Ω(t), t0 < t < T} ⊂ R
3 (2.11)

with Ω(t) ⊂ R
2 the continuously changing flow domain, t0 the initial time

and T the final time. To tessellate the space-time domain, the time interval
[t0, T ] is divided into finite time intervals In = [tn, tn+1] with n = 0, . . . , NT

and NT the number of space-time slabs. Now at each time level tn, we
tessellate the flow domain Ω(tn) using the open space elements Kn

k with
closure K̄n

k to obtain a mesh with Ne spatial elements. The tessellation of
the spatial domain is

T̄ n
h := {Kn

k |
Ne
⋃

k=1

K̄n
k = Ω̄h and Kn

k ∩ Kn
k′ = ∅ if k 6= k′, 1 ≤ k, k′ ≤ Ne},

(2.12)

such that the computational space domain Ωh → Ω as h → 0, in which
h is the radius of the largest circle among the union of circles each just
containing an element Kn

k ∈ T̄ n
h . The space-time tessellation consisting of

space-time elements Kn
k can be obtained by connecting the corresponding

spatial elements Kn
k and Kn−1

k of the computational space domain Ωh at
times tn and tn−1.
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To calculate the flux through the element boundaries, it is useful to
introduce the union of faces Sm, each face either connecting two space-time
elements, known as interior face, or a space-time element to the boundary
of the space-time domain ∂E , known as boundary face. The union of all
faces Sm is Γ = Γint ∪ Γbou with Γint and Γbou the union of interior and
boundary faces, respectively.

To define function spaces and apply quadrature rules later, a mapping
Fn

K : K̂ → Kn
k is defined from a reference element K̂ onto each spatial

element Kn
k as

Fn
K : K̂ → Kn

k : ζ̄ → x̄ :=
∑

j

x̄n
j χj(ζ̄) (2.13)

with ζ̄ = (ζ1, ζ2) the reference coordinates, x̄ = (x, y) the spatial coordi-
nates, x̄n

j the nodal coordinates and χj(ζ̄) the standard shape functions of

the element Kn
k . Subsequently, a mapping Gn

K : K̂ → Kn
k is defined from a

reference element K̂ onto each space-time element Kn
k as

Gn
K : K̂ → Kn

k : ζ → x :=
(1

2

(

(1 + ζ0)tn + (1 − ζ0)tn−1)
)

,

1

2

(

(1 + ζ0)F
n
K(ζ̄) + (1 − ζ0)F

n−1
K (ζ̄)

)

)

(2.14)

with ζ = (ζ0, ζ̄) the space-time reference coordinates and ζ0 = [−1, 1].

2.3.2 Function spaces, traces and trace operators

To define the discontinuous Galerkin weak formulation, we introduce the
broken space Vd

h defined as

Vd
h := {Vh : Vh|Kn

k
◦ Gn

K ∈ (P 1(K̂))d, ∀Kn
k } (2.15)

with P 1 the space of linear polynomials, d = dim(Vh) and Vh the polyno-
mial approximation per space-time element defined as

Vh :=
M−1
∑

m=0

V̂m ψm(x), (2.16)
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where V̂m is the expansion coefficient, ψm(x) the polynomial basis functions
and M the number of basis functions. The polynomial basis functions are
first defined on reference element K̂ as

φ̂m : K̂ → R := {1, ζ0, ζ1, ζ2, ζ1ζ2, ζ0ζ1, ζ2ζ0, ζ0ζ1ζ2}, m = 0, . . . , 7,
(2.17)

and then transformed onto each space-time element Kn
k as φm : Kn

k → R

using the mapping Gn
K. We either take M = 5 for fixed meshes or M = 8 for

dynamic meshes. To define the numerical dissipation near discontinuities,
we split the function Vh into a mean V̄h = V̂0 and a fluctuating part
Ṽh =

∑M−1
m=1 V̂mψm at t−n := limǫ↑0(tn + ǫ). The splitting is obtained by

introducing the basis functions as

ψm(x) : Kn
k → R :=

{

1 m = 0
φm(x) − 1

|Kn
k
|

∫

Kn
k

φm(t−n , x̄) dK otherwise

(2.18)

with |Kn
k | =

∫

Kn
k

dK the area of the element Kk at time tn. The mean of

the function Vh can now be defined as V̄h :=
∫

Kn
k
VhdK/|Kn

k | since the

fluctuating part has the following property
∫

Kn
k

ṼhdK = 0. (2.19)

It should be noted that the numerical dissipation usually acts on the ex-
pansion coefficients of the fluctuating part and because of property (2.19),
the mean remains the same and ensures conservation.

The trace of the function Vh on the element boundary ∂Kn
k taken from

the inside of the space-time element Kn
k is defined as

Vh(x)|∂Kn
k

= V− := lim
ǫ↑0

Vh(x + ǫnK) (2.20)

with nK the outward unit normal vector of the boundary ∂Kn
k . Since Vh ∈

Vd
h , i.e., the functions are approximated per space-time element Kn

k , the
traces of the function taken from the inside of any two adjacent elements
are discontinuous. Hence, on each face Sm connecting the element Kl from
left and Kr from right, it is convenient to introduce the following weighted
average {{·}} and jump [[·]] trace operators:
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Definition 2.3.1. The weighted average {{F}}α,β of a scalar function F ∈
Vd

h on the face Sm ∈ Γint is defined as:

{{F}}α,β := (αF l + βF r) (2.21)

with α + β = 1, and F l and F r the traces of the scalar function F taken
from the inside of elements Kl and Kr, respectively. The weighted average
{{G}}α,β of a vector function G ∈ Vd

h on Sm ∈ Γint is defined as:

{{G}}α,β := αGl + βGr (2.22)

with Gl and Gr the traces of the vector function G from the inside of
elements Kl and Kr, respectively.

Definition 2.3.2. The jump [[F ]] of a scalar function F ∈ Vd
h on Sm ∈ Γint

is defined as:
[[F ]] := (F lnl

K + F rnr
K) (2.23)

with nl
K and nr

K the outward unit normal vectors of the face Sm w.r.t.
elements Kl and Kr, respectively. Note that nl

K = −nr
K. The jump [[G]] of

a vector function G ∈ Vd
h on Sm ∈ Γint is defined as:

[[G]] := Gl · nl
K + Gr · nr

K. (2.24)

Now the following proposition holds between jumps and averages:

Proposition 2.3.3. For any arbitrary scalar function F ∈ Vd
h and vector

function G ∈ Vd
h , the following relation holds for the traces on Sm ∈ Γint:

F l(Gl · nl
K) + F r(Gr · nr

K) = {{F}}α,β [[G]] + [[F ]] · {{G}}β,α, Sm ∈ Γint.
(2.25)

Proof. Evaluate the left-hand side of (2.25) by using the fact nl
K = −nr

K,
rearranging the terms and using definitions (2.21) to (2.24), to find

F l(Gl · nl) + F r(Gr · nr) =F l(Gl · nl) − F r(Gr · nl)

F (G·n)=G·(Fn)
= (αF l + βF r)(Gl · nl − Gr · nl)

+ (βGl + αGr) · (nlF l − nlF r)

={{F}}α,β [[G]] + [[F ]] · {{G}}β,α. (2.26)



2.3 Space-time DG finite element model 25

2.3.3 Discontinuous Galerkin weak formulation

The discontinuous Galerkin weak formulation per space-time element Kn
k

is obtained by multiplying the shallow water equations (2.1) with arbitrary
test functions Wh ∈ Vd

h , integrating by parts over space-time element Kn
k ,

using Gauss’ theorem in space and time, and introducing the shorthand
notation Fi(U

−
h ) = F−

i . We obtain then the weak formulation
∫

∂Kn
k

nK · (W−
hiF−

i )d(∂K) −
∫

Kn
k

∇Whi · Fi(Uh) dK −
∫

Kn
k

Whi Si dK = 0.

(2.27)

After summation of the weak formulation (2.27) over all space-time el-
ements Kn

k in the space-time interval In, we can rearrange the element
boundary integrals into a summation of interior face integrals and bound-
ary face integrals, and use relation (2.25) to get

∑

K

∫

∂Kn
k

nK · (W−
hiF−

i ) d(∂K) =
∑

S∈Γbou

∫

Sm

W l
hi(n

l
K · F l

i ) dS

+
∑

S∈Γint

{

∫

Sm

({{Fi}}α,β · [[Whi]] + [[Fi]]{{Whi}}β,α) dS
}

,

(2.28)

where FK , UK
h and WK

h are the limiting trace values on the face Sm taken
from the inside of the element KK , K = l or r; and, nK

K is the outward unit
normal vector. Now, we enforce the continuity of the flux [[Fi]] = 0 and
introduce a consistent and conservative numerical flux

F̂i(U
l
h,U

r
h,nK) ≈ nK ·

{

{{Fi}}α,β for Sm ∈ Γint

F l
i for Sm ∈ Γbou

(2.29)

in which the boundary data Ub
h = Ur

h are applied at Sm ∈ Γbou. After intro-
ducing the numerical flux (2.29) into (2.28), we obtain the weak formulation

∑

S

∫

Sm

F̂i(U
l
h,U

r
h,n

l
K)(W l

hi − W r
hi) dS−

∑

K

{

∫

Kn
k

∇Whi · Fi(Uh) dK +

∫

Kn
k

Whi Si dK
}

= 0 ∀ Wh ∈ Vd
h ,

(2.30)
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in which we have combined the interior and boundary face integrals by
keeping in mind that W r

hi = 0 when Sm ∈ Γbou. In section 2.3.5, we will

define the normal numerical flux F̂i(U
l
h,U

r
h,nK) through the faces. The

weak formulation (2.30) is akin to the numerical implementation in which
we loop separately over faces and elements to calculate the face and element
integrals.

2.3.4 Numerical dissipation near bores and jumps

The shallow water equations (2.1) are hyperbolic and hence its weak for-
mulation (2.30) admits discontinuous solutions in the form of bores and hy-
draulic jumps. In numerical discretizations of the weak formulation (2.30),
spurious oscillations generally appear near discontinuities. To suppress
these spurious oscillations, we extend and apply the dissipation operator of
Van der Vegt and Van der Ven [64] into the weak formulation per space-time
element Kn

k as

Dn
k (Wh,Uh;U

∗
h) :=

∫

Kn
k

(∇Uhi)
T

D
n
k (Uh,U

∗
h) (∇Whi) dK, (2.31)

where D
n
k (Uh,U

∗
h) is the diagonal dissipation matrix, Uh the solution in

Kn
k and U∗

h the solution in the immediate neighboring elements of Kn
k . The

dissipation operator (2.31) acts in every space-time element Kn
k but is only

required around discontinuities and sharp gradients.
The evaluation of the numerical dissipation operator Dn

k (Wh,Uh,U
∗
h)

is more straightforward in the reference coordinate directions than in the
physical space coordinates, so we transform (2.31) onto the reference ele-
ment as

Dn
k (Wh,Uh;U

∗
h) :=

∫

K̂
(∇̂Uhi)

T
(

J−1
D

n
k (Uh,U

∗
h) (JT )−1

)

(∇̂Whi) |J |dK̂
(2.32)

with J the Jacobian matrix defined as Jkl := ∂xk/∂ζl, |J | the determi-
nant of the Jacobian matrix, ∇̂ = (∂ζ0 , ∂ζ1 , ∂ζ2)

T the differential operator

with the relation ∇̂ = JT∇. Now, we introduce the dissipation matrix
D̃

n
k (Uh,U

∗
h) on the reference element as

D̃
n
k (Uh,U

∗
h) :=J−1

D
n
k (Uh,U

∗
h)(J

T )−1. (2.33)
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To evaluate (2.32), instead of computing D̃
n
k (Uh,U

∗
h) at each Gauss’ point

we compute it only at the midpoint of the reference element ζ = (0, 0, 0).
Also, the Jacobian matrix is diagonalized as J = diag{c0, c1, c2}/2 with
ck = 2

∑3
l=0 ∂xk/∂ζl at ζ = (0, 0, 0) to reduce the computational effort.

The factor 2 introduced in the diagonalization of the Jacobian J makes
the parameter ck into the size of the element Kn

k in the physical coordinate
direction xk. Since D

n
k (Uh,U

∗
h) is a diagonal matrix, the dissipation matrix

(2.33) is simplified to

D̃
n
k;kl(Uh,U

∗
h)|ζ=(0,0,0):=

4

c2
k

D
n
k,kk(Uh,U

∗
h) for k = l, and 0 for k 6= l.

(2.34)

Jaffre et al. [26] proposed a diagonal dissipation matrix D
n
k (Uh,U

∗
h) for

hyperbolic conservation laws, which is defined as

D
n
k;kk|(ζ=0,0,0):=

{

max
(

C2c
2−γ
K Rn

k (Uh,U
∗
h), C1c

1.5
K

)

, if k = 1, 2

0, if k = 0
(2.35)

for the shallow water equations with

Rn
k (Uh,U

∗
h) := max

i

(

max
x∈Kn

k

‖∇ · Fi(Uh)‖
)

+
∑

Sm⊂∂Kn
k

C0 max
i

(

max
x∈Sm

‖nl
K · (F l

i −Fr
i )‖/cK

)

, (2.36)

cK = min(c1, c2) a scaling factor, maxx∈Kn
k
‖·‖ is based on the midpoint of

the reference element, maxx∈Sm
‖·‖ is based on the midpoint of the face of

the reference element, and Ci for i = 0, 1, 2 and γ are positive constants.
The positive constants are taken from [64] as C0 = 1.2 if the normal of the
face Sm is parallel to the time direction or else C0 = 1.0, C1 = 0.1, C2 = 1.0
and γ = 0.1. (In general, the constant C2 is chosen between 0.1 and 10.)
According to [26], the positive constant C2 can be tuned depending upon
the desired quality of solution.

Krivodonova et al. [33] proposed a discontinuity detector scheme, to
apply numerical dissipation (2.31) only near discontinuities. We adopt the
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Krivodonova discontinuity detector for the shallow water equations as fol-
lows

In
k (hh, h

∗
h) :=

∑

Sm∈∂Kn
k

∫

Sm

|h+
h − h−

h |dS

h
(p+1)/2
K |∂Kn

k | max‖hh‖
, (2.37)

where hh is the approximated water depth, hK the cell measure defined as
the radius of the largest circumscribed circle in the element Kn

k , |∂Kn
k | the

surface area of the element, and max‖·‖ the maximum norm based on local
Gauss’ integration points in the element Kn

k . Now the space-time elements
in non-smooth and smooth regions are detected by In

k > 1 and In
k < 1,

respectively.

The weak formulation (2.30) is combined with the dissipation operator
(2.31) based on the discontinuity detector (2.37) as follows:
Find a Uh ∈ Vd

h such that for all Wh ∈ Vd
h

∑

S

{

∫

Sm

F̂i(U
l
h,U

r
h,nK)(W l

hi − W r
hi) dS −

∑

K

{

∫

Kn
k

∇Whi · Fi(Uh) dK

+

∫

Kn
k

Whi Si dK − Θ(In
k − 1)Dn

k (Uh,U
∗
h)

}

= 0 (2.38)

is satisfied with Θ(In
k − 1) the Heaviside function.

2.3.5 Numerical HLLC flux

In the weak formulation (2.30), we introduced the approximate numerical
flux F̂(Ul

h,U
r
h,nK) because the solution vector Uh is discontinuous at the

element face, as in Fig. 2.2. The numerical flux is usually given by the
solution of the Riemann problem identified with the trace values Ul,r

h di-
rectly on either side of the face. Since the solution of Riemann problem is
computationally expensive, approximate Riemann solvers are used in prac-
tice. The HLLC solver in [61] is such an efficient and approximate Riemann
solver. In [9], the HLLC solver was improved with appropriate choices of
acoustic and contact wave velocities for the Euler equations. Further in [64],
this solver was extended to dynamic grids. We show here that the HLLC
flux can be derived in space-time without making any explicit difference
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between space and time such that the resulting flux is applicable at all the
faces of the space-time element. The approach applies the HLLC-technique
in pseudo-time τ and the direction χ of the outward normal in a space-time
element.

��

��

U
l
h

U
r
h

t

x̄

nK

K
l

K
r

tK

(0, 0)

(∆t, ∆x̄)

Sm

nK

(a) (b)

Figure 2.2: (a) Geometry at a face Sm connecting the space-time elements
Kl and Kr. (b) Local Riemann problem at a face.

To analyze the HLLC flux through the face Sm, we first have to under-
stand the geometry at the face Sm connecting the space-time elements Kl

and Kr. For convenience, let us take the coordinate axis with the origin
located at the bottom corner of the face Sm as in Fig. 2(a). Now, the
top corner of the face Sm can be taken (∆t, ∆x̄) with ∆x̄ = (∆x,∆y) the
displacement of the top corner from the bottom corner in the x and y di-
rections, respectively. The tangential vector tK along the face can be taken
as (∆t, ∆x̄)T . Since the tangential and normal vectors are orthogonal, we
have

nt = −n̄K · ∆x̄/∆t = −n̄K · vg = −vg/
√

1 + v2
g (2.39)

with nK = (nt, n̄K) the unit space-time normal vector of the face Sm, n̄K =

(nx, ny) = (ñx, ñy)/
√

1 + v2
g , ñK = (ñx, ñy) the spatial normal vector, vg =

∆x̄/∆t the grid velocity, and vg = ñK · vg the normal grid velocity. To
unify the derivation of a space-time numerical flux, we consider the one-
dimensional shallow water equations in the direction nK normal to a space-
time face of an element. By ignoring dependencies in the other directions,
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we obtain

∂τU + ∂χF̂ = 0 (2.40)

with U = (h, hu, hv)T , F̂ = (hq, huq +nxP, hvq +nyP )T , effective pressure
P = gh2/2, space-time velocity

q = nt + n̄K · u, (2.41)

χ the coordinate in the direction of nK, and pseudo-time τ . The spatial
HLLC approach of [9] is now applied to (2.40) but in the τ, χ–space. The
HLLC wave patterns are sketched in Fig. 2.3(a) in the physical t, x̄–space
and in Fig. 2.3(b) in the τ, χ–space. In physical space, the left and right
waves are taken as

Sl = min(q̃l − al, q̃r − ar) and Sr = max(q̃l + al, q̃r + ar) (2.42)

with q̃ = ñK · u the speed in the spatial normal direction, as in [9], and
a2 = ∂P/∂h. We infer from (2.41) that

sr = (Sr − vg)/
√

1 + v2
g and sr = (Sl − vg)/

√

1 + v2
g . (2.43)
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Figure 2.3: (a) HLLC wave pattern in physical space with vg = n̄K ·vg. (b)
The HLLC pattern in τ, χ–space.

As usual, four possible cases occur (i) sl < 0, sr > 0, sm > 0; (ii)
sl < 0, sr > 0, sm < 0; (iii) sl < 0, sr < 0, sm < 0 and (iv) sl > 0, sr >
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0, sm > 0. Combining the HLLC flux for the four cases (as in [9]), but in
the τ, χ-space, we obtain

F̂HLLC(Ul,Ur,nK) =
1

2

{

F̂l + F̂r − (|sl| − |sm|)U∗l + (|sr| − |sm|)U∗r

+ |sl|Ul − |sr|Ur

}

, (2.44)

where F̂l,r = F̂(Ul,r). The usual HLLC-expressions for the wave speed sm

and the average intermediate states U∗l and U∗r are given next.

τ

A

BC

D

F

E

srsl

Ul UrU∗

χ

Figure 2.4: Riemann fan for shallow water equations (HLL approach).

As in [9] we assume sm = q∗l = q∗r = q∗ where q∗ is the average directed
velocity between the left and right waves. The q∗ can be obtained from
the average intermediate state U∗ calculated using HLL approach (see Fig.
2.4). The average intermediate state U∗ is given by

U∗ =
(

srU
r − slU

l − (F̂r − F̂l)
)

/(sr − sl). (2.45)

The wave speed sm follows from (2.45) as

sm = q∗ =
nK · U∗

h∗
=

hrqr(sr − qr) − hlql(sl − ql) − (n2
x + n2

y)(Pr − Pl)

hr(sr − qr) − hl(sl − ql)
(2.46)

with h∗ the average intermediate depth, following from (2.45). By substi-
tuting the expressions (2.41) and (2.43) into (2.46), it follows that sm =
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(Sm − vg)/
√

1 + v2
g , as expected heuristically. Here Sm is the expression

in [9]; essentially it follows by replacing the space-time variables in (2.46)
by their space counterparts as in: sm → Sm, sr → Sr, Sl → sl, ql → q̃l and
qr → q̃r.

The intermediate states U∗l and U∗r are determined by using the Rankine-
Hugoniot relations across left wave and right wave as

(sl,r − sm)U∗l,∗r = (sl,r − ql,r)U
l,r + (P̂∗l,∗r − P̂l,r), (2.47)

where P̂∗l,∗r = (0, nxP ∗
l,r, nyP

∗
l,r) is the average intermediate normal pres-

sure, P ∗
l,r is the average intermediate pressure obtained by multiplying

(2.47) with nK and is given by

P ∗ = P ∗
l,r = Pl,r + (hl,r (sl,r − ql,r) (sm − ql,r))/(n2

x + n2
y). (2.48)

When sl > 0 the flux simplifies to F̂l and when sr < 0 to F̂r, i.e. the classic
upwind cases.

The expressions (2.43)–(2.48) for our HLLC flux, using

nK = (nt, nx, ny) = (−vg, ñx, ñy)/
√

1 + v2
g , (2.49)

reduce to the expressions in [64]: in comparison our flux is multiplied by a

factor 1/
√

1 + v2
g because we included the space-time normal.

In the limit vg → ∞, we obtain

F̂HLLC = lim
vg→∞

F̂r = −(hr, ur, ur, hrvr)
T . (2.50)

This is consistent since we are at the bottom face t = tn of a space-time
element with space-time normal nK = (−1, 0, 0)T , and (2.40) becomes
∂τU − ∂χU = 0. Causality in time thus reduces to an upwind flux in
our unified approach, as expected.

Likewise, we find at the top t = tn+1 of the space-time element that
vg → −∞

F̂HLLC = lim
vg→−∞

F̂l = (hl, ul, ul, hlvl)
T , (2.51)

and (2.40) becomes ∂τU + ∂χU = 0.
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2.3.6 Discretized weak formulation: non-linear equations

The weak formulation (2.38) is discretized by substituting the polynomial
approximation of the state vector Uh (2.16) and using the arbitrariness of
the test function Wh as (ψj , 0, 0), (0, ψj , 0) and (0, 0, ψj), j = 0 . . .M − 1
with M = 5 or M = 8. The discretized equations can now be obtained as

∑

Sm⊂∂Kn
k

{

∫

Sm

(

F̂i(U
l
h,U

r
h,n

k
K)ψj dS

}

−
∫

Kn
k

∇ψj · Fi(Uh) dK + Θ(In
k − 1)

×
4

∑

m=0

Ûn
im

∫

Kn
k

(∇ψm)D
n
k (Uh,U

∗
h) (∇ψj)

T dK −
∫

Kn
k

Si ψj dK = 0,

(2.52)

where i = 0, 1, 2 is the index for the shallow water equations, m the index
for the expansion coefficients, m the index for the faces and k the index
for the elements. The various terms in the non-linear equations (2.52) are
represented as follows:

En;K
k;ij (Ûn) =

∫

Kn
k

∇ψj · Fi(Uh) dK,

F k;S
m;ij(Û

n, Ûn−1) =

∫

Sm⊂∂Kn
k

F̂(Ul
h,U

r
h,nK)ψj dS, k = l or r,

Dn;K
k;ij (Ûn, Ûn−1) =

M−1
∑

m=0

Ûn
imD̄n;K

k;jm(Ûn, Ûn−1) with

D̄n;K
k;jm(Ûn, Ûn−1) =

∫

Kn
k

(∇ψm)T
D

n
k (Uh,U

∗
h) (∇ψj) dK, and

Gn;K
k;ij (Û

n) =

∫

Kn
k

ψj Si dK.

(2.53)
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The non-linear set of equations (2.52) for each space-time element thus
become

Ln;K
k;ij (Û

n; Ûn−1) =
∑

Sm⊂∂Kn
k

F k;S
m;ij − En;K

k;ij + Θ(In
k − 1)Dn;K

k;ij − Gn;K
k;ij = 0,

(2.54)

where n represents the space-time level and k represents the index of the
space-time element Kn

k . Given the coefficients Ûn−1 at the previous time

level tn−1, we have to find the coefficients Ûn satisfying (2.54) at the present
time level tn.

2.3.7 Pseudo-time integration: non-linear solver

To solve the system of non-linear equations (2.54) obtained from the space-
time discontinuous Galerkin discretization, we augment these equations
with a pseudo-time derivative as

|Kn
k |

∂Ûij

∂τ
= − 1

∆t
Ln;K

k;ij (Û; Ûn−1) (2.55)

with ∆t = (tn− tn−1) the time step and |Kn
k | = |Kn

k |/∆t. Now we integrate
(2.55) until the solution reaches steady state in pseudo-time, i.e.,

Ln;K
k;ij (Û

n; Ûn−1) ≈ 0. (2.56)

The pseudo-time integration scheme is obtained from a second order accu-
rate five-stage Runge-Kutta scheme by treating V̂ in Ln;K

k (V̂; Ûn−1) semi-
implicitly as

(

I +
αsλ

|Kn
k |

(

|Kn
k |I + Θ(In

k − 1)D̄n;K
k (V̂s−1, Ûn−1)

)

)

V̂s = V̂0 +
αsλ

|Kn
k |
×

(

(

|Kn
k |I + Θ(In

k − 1)D̄n;K
k (V̂s−1, Ûn−1)

)

V̂s−1 − Ln;K
k (V̂s−1; Ûn−1)

)

,

(2.57)
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where s = 1, . . . , 5 are the Runge-Kutta stages, αs = (0.0791451, 0.163551,
0.283663, 0.5, 1.0) the Runge-Kutta coefficients, λ = ∆τ/∆t and ∆τ the
pseudo-time step. The pseudo-time step ∆τ is determined locally per space-
time element by a CFL condition given as

∆τ |Kn
k

= CFL∆τ |Kn
k |/Sn

k;max (2.58)

with Sn
k;max the maximum wave speed in the space-time element Kn

k and
CFL∆τ = 0.8 the CFL number for the pseudo-time step.

In our numerical computations, we observed that in the presence of
discontinuities the residue may oscillate between smooth and non-smooth
states resulting in a non-convergent scheme. The main cause of these oscil-
lations is that the pseudo-time integration scheme (2.57) integrates the non-
linear system Ln;K

k ≈ (Ān
k + D̄n

k )V̂ = 0 when In
k > 1, and Ln;K

k ≈ Ān
k V̂ = 0

otherwise, in each space-time element Kn
k . To avoid this, we use a switch

I ′n
k in every space-time element such that I ′n

k = −1 when In
k < 1, and

I ′n
k = 1 when In

k > 1 for pseudo-time steps, whereafter we only switch to
I ′n

k = 1 wherever In
k > 1 until the solution reaches steady state in pseudo-

time. Finally, in the numerical scheme we replace Θ(In
k − 1) with Θ(I ′n

k )
to achieve convergence.

2.4 Properties and analysis of the numerical dis-
cretization

2.4.1 Persistence of the discretized rest state

The shallow water equations at rest satisfy u = 0 for a fixed depth h(x) =
D(x̄) such that ∇̄(gh2/2) = −gh∇̄hb. For smooth topography hb(x̄) +
h(x) = H is constant.

Proposition 2.4.1. Consider the shallow water equations with a consistent
and conservative numerical flux F̂i(U

−
h ,U+

h ,nK) and the weak formulation
(2.30). The weak formulation (2.30) exactly satisfies the steady rest state
u = 0, H = h(x) + hb(x̄) if:
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1. The bottom topography hb(x̄) is approximated smoothly as follows:

h̃b(x̄) =
M−1
∑

0

ĥb;mψm such that (2.59)

hb(xk, yk) = h̃b(xk, yk) for k = 0, 1, 2 and 3 (2.60)

with h̃b(x̄) the approximated topography, ψm the basis functions de-
fined in (2.18), ĥb;m the expansion coefficients of the topographic ap-
proximation and (xk, yk) the nodal coordinates of the spatial element
Kk. The expansion coefficient corresponding to the time coordinate
ĥb;1 is taken zero when M = 5.

2. The rest water depth h(x) is approximated as

h̃(x̄) = H − h̃b(x̄) =
M−1
∑

m=0

ĥmψm (2.61)

with h̃(x̄) the approximated water depth and ĥm the expansion coef-
ficient of the water depth obtained using a (dis)continuous Galerkin
projection with ĥ1 = 0 for M = 5.

3. The spatial element Kn
k is not deforming in time.

Proof. We give the proof for the case with M = 5. The approximated
topography h̃b(x̄) as given in (2.59) satisfying (2.60) ensures that h̃b(x̄) is
piecewise continuous and linear along the faces. Hence, h̃ in (2.61) is also
piecewise continuous and linear along the faces. Since the velocities are
zero, we can now conclude that Uh = (h̃, h̃u, h̃v) is piecewise continuous
and linear along the faces. Also the traces on each element boundary from
the inside and outside the element are equal, i.e., Uh|∂Kn

k
= U−

h = U+
h .

Using the consistency property of numerical flux, we get

F̃(U−
h ,U+

h ,nK) = F(Uh). (2.62)

Substituting (2.62) in (2.30) for every element, we obtain an alternative
form of the weak formulation as follows:

∫

∂Kn
k

W−
j

(

nK · Fi(Uh)
)

d(∂K) −
∫

Kn
k

∇Whj · Fi(Uh)dK −
∫

Kn
k

Whj SidK

= 0. (2.63)
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After integrating by parts and applying Gauss’ theorem in space and time,
we get

∫

Kn
k

Whi

(

∇ · Fi(Uh)
)

dK −
∫

Kn
k

Whi Si dK = 0. (2.64)

Since Wh is arbitrary, the approximation Uh needs to satisfy

∇ · Fi(Uh) = Si. (2.65)

Substituting the approximations Uh in ∇ · Fi(Uh), we get

∂th̃ = ∂t(H − h̃b) = 0, and ∇̄(gh̃2/2) = gh̃∇̄(H − h̃b) = −gh̃∇̄h̃b.
(2.66)

Hence, the steady rest state is satisfied in the discretized equations.

This strategy to preserve the rest state coincides with the one in [11] and
[57], and contrasts with the ones in [7] and [34], because we consider smooth
topography. Preservation of the rest state with discontinuous bottom to-
pography and a Galerkin finite element method is found in Rhebergen et
al. [50].

2.4.2 Discrete Fourier analysis

For the discrete Fourier analysis of the space-time DG discretization, we
consider the one dimensional linearized rotating shallow water equations

∂tη + ∂x(Hu) = 0, ∂tu − fv = −g∂xη and ∂tv + fu = 0 (2.67)

with η(t, x) the free surface perturbation around a mean surface depth H,
(u(t, x), v(t, x)) the velocity field, g the gravitational acceleration and f

the Coriolis parameter. These equations can be solved using the following
ansatz:

η(t, x) = Aeı(kx+ωt) and (u(t, x), v(t, x)) =
−gAk

(ω2 − f2)
(ω, fı)eı(kx+ωt)

(2.68)

yielding the dispersion relation ω2 = a2k2 + f2 with amplitude A, frequency
ω, wave number k, and gravity wave speed a =

√
gH.



38 Chapter 2: Space-time Method for Shallow Water Waves

To discretize (2.67), we consider one dimensional space-time elements
Kn

k with neighboring elements Kn
k−1 and Kn

k+1 in the x–direction, and Kn−1
k

and Kn+1
k in the t–direction. The faces of the space-time element Kn

k can
now be given by Sl = K̄n

k−1 ∩ K̄n
k , Sr = K̄n

k ∩ K̄n
k+1, Sb = K̄n−1

k ∩ K̄n
k and

St = K̄n
k ∩ K̄n+1

k with element boundary ∂Kn
k = Sl ∪ Sr ∪ Sb ∪ St. In each

space-time element, we approximate the wave field (η, u, v) as

(ηn
k , un

k , vn
k ) =

2
∑

j=0

(η̂n
k,j , û

n
k,j , v̂

n
k,j)ψj (2.69)

with (η̂n
k,j , û

n
k,j , v̂

n
k,j) the expansion coefficients and ψj the basis functions.

The basis functions ψj in the reference elements K̂ are defined as ψ̂ =
(1, ζ0 − 1, ζ).

To simplify the weak formulation (2.30) per space-time element, we
substitute (η̃, ũ, ṽ) := (η+, u−, v−) in the numerical flux evaluation at the
elements faces Sl and Sr, and the upwind flux in the time direction. The
weak formulation (2.53) then becomes

−
∫

Sb

ηn−1
k w−

1 dS +

∫

St

ηn
k w−

1 dS −
∫

Sl

Hun
k−1w

−
1 dS +

∫

Sr

Hun
kw−

1 dS

−
∫

Kn
k

(∂tw1)η
n
k dK −

∫

Kn
k

(∂xw1)Hun
kdK = 0,

−
∫

Sb

un−1
k w−

2 dS +

∫

St

un
kw−

2 dS −
∫

Sl

gηn
k w−

2 dS +

∫

Sr

gηn
k+1w

−
2 dS

−
∫

Kn
k

(∂tw2)u
n
kdK −

∫

Kn
k

(∂xw2)gηn
k dK −

∫

Kn
k

w2fv
n
k dK = 0,

−
∫

Sb

vn−1
k w−

3 dS +

∫

St

vn
k w−

3 dS −
∫

Kn
k

(∂tw3)v
n
k dK +

∫

Kn
k

w3fu
n
kdK = 0

(2.70)

with (w1, w2, w3) the test functions. Substituting the polynomial approxi-
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mation (2.69) in (2.70), the numerical discretization is obtained as

−An
k η̂n−1

k + Bn
k η̂n

k − HCn,1
k ûn

k−1 + HDn,1
k ûn

k − En
k η̂n

k − HFn
k ûn

k =0,

−An
k ûn−1

k + Bn
k ûn

k − gCn,2
k η̂n

k + gDn,2
k η̂n

k+1 − En
k ûn

k − gFn
k η̂n

k − fGn
k v̂n

k =0,

−An
k v̂n−1

k + Bn
k v̂n

k − En
k v̂n

k + fGn
k ûn

k =0,
(2.71)

where the 3 × 3 matrices are defined as follows:

An
k;ij :=

∫

Sb

ψ+
j ψ−

i dS, Bn
k;ij :=

∫

St

ψ−
j ψ−

i dS, Cn,1
k;ij :=

∫

Sl

ψ+
j ψ−

i dS,

Cn,2
k;ij :=

∫

Sl

ψ−
j ψ−

i dS, Dn,1
k;ij :=

∫

Sr

ψ−
j ψ−

i dS, Dn,2
k;ij :=

∫

Sr

ψ+
j ψ−

i dS,

En
k;ij :=

∫

Kn
k

ψj(∂tψi)dK, Fn
k;ij :=

∫

Kn
k

ψj(∂xψi)dK, and

Gn
k;iji :=

∫

Kn
k

ψjψidK. (2.72)

To investigate the stability, dispersion and dissipation error of the nu-
merical scheme, we use a discrete Fourier ansatz for the coefficients of the
wave field as

(η̂n
k , ûn

k , v̂n
k ) := λn exp(ıkk∆x)(η̂F , ûF , v̂F ), (2.73)

where (η̂F , ûF , v̂F ) are the Fourier coefficients. Substituting (2.73) into the
discretized equations (2.71), we obtain

Mn
k η̂F + λH

(

− exp(−ık∆x)Cn,1
k + Dn,1

k − Fn
k

)

ûF = 0,

Mn
k ûF + λg

(

− Cn,2
k + exp(ık∆x)Dn,2

k − Fn
k

)

η̂F − λfGn
k v̂F = 0,

Mn
k v̂F + λfGn

k ûF = 0 (2.74)

with Mn
k = −An

k +λBn
k −λEn

k . Combining the equations (2.74), we get the
following eigen-value problem

[

Mn
k + f2Gn

k (Mn
k )−1Gn

k − (λa)2Hn,1
k (Mn

k )−1Hn,2
k

]

ûF = 0 (2.75)

with Hn,1
k = − exp(−ık∆x)Cn,1

k +Dn,1
k −Fn

k and Hn,2
k = −Cn,2

k +exp(ık∆x)

Dn,2
k −Fn

k . If we take uniform elements of size ∆x and ∆t then we find
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using Maple that (Mn
k )−1 is of the form M1/(λ−1)+M2/(λ). After some

algebraic manipulations, a simplified quadratic eigenvalue problem can be
obtained of the following form:

λ2P + λQ + R = 0. (2.76)

Using Matlab, we solve for the eigenvalues λ with k∆x = [0, 2π], the CFL
number CFL∆t = a∆t/∆x and Coriolis parameter f. For a wide range of
CFL numbers and Coriolis parameters, we always obtained max|λ| < 1,
which shows that the scheme is unconditionally stable.

The eigenvalue λ is analogous to the frequency of the harmonic wave as

λ = exp(ıω̃∆t) (2.77)

with ω̃ = ω̃1 + ıω̃2 in which ω̃1 is the numerical frequency and ω̃2 is the
dissipation of the numerical scheme. The dispersion error |ω̃1 − ω| and
dissipation error ω̃2 of the numerical scheme can now be given as

|ω̃1 − ω| = |arg(λ) − ω| and ω̃2 = − ln(|λ|)
∆t

, (2.78)

respectively. Some of the eigenvalues of (2.76) will be close to the actual
frequencies of the harmonic wave, which we use to compute the dispersion
error and dissipation of the numerical scheme. In Figs. 2.5 to 2.7, we have
plotted the contours of dispersion and dissipation errors for mesh resolu-
tion k ∆x = [0, 0.25], wave frequency resolution Ω∆t = [0, 0.25], Coriolis
parameter f = 0, 2, 3 and wave number k = 1. We can observe from the
plots that the dispersion error and dissipation error decrease with the in-
crease of the mesh resolution and the wave frequency resolution. The exact
and numerical dispersion relations in Fig. 2.8 reveal the dispersion error in
another way.

2.5 Concluding remarks

A space-time discontinuous Galerkin method for the (rotating) shallow wa-
ter equations has been presented for shallow flows over varying topography
and in time dependent domains. This application of the space-time discon-
tinuous Galerkin method is new. It is especially interesting as a mile stone
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Figure 2.5: f = 0, ak = 1 and f2 < a2k2.
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Figure 2.6: f = 2, ak = 1 and f2 > a2k2.
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Figure 2.7: f = 3, ak = 1 and f2 > a2k2.
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Figure 2.8: Plot of numerical and actual frequencies for different wave
numbers k with mesh size ∆x = 2π/10 and f = 1. Solid lines correspond
to the actual frequency ω and the marks ”+”, ”.” and ”◦” correspond to
the numerical frequencies ω̃1 for ∆t = 1.0, 0.5 and 0.05, respectively.
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towards accurate numerical modeling of the time evolution of the water line
in flooding and drying events. These events are important in the prediction
of river floods and near-shore hydrodynamics.

Due to the presence of bores in the shallow water equations spurious
oscillations will arise in higher order shock-capturing numerical schemes
such as our space-time method. We have limited these spurious oscillations
around discontinuities and sharp gradients by applying dissipation but only
near discontinuities once these are detected by Krivodonova’s discontinuity
detector [33]. Furthermore, we showed that our numerical discretization
preserves the state of rest for non-uniform topography, by use of a smooth
approximation for the topography. A discrete Fourier analysis of the nu-
merical discretization for one-dimensional linearized rotating shallow water
equations showed that the scheme was unconditionally stable with small
dispersion and dissipation error.





Chapter 3
Applications to Geophysical
Flows

3.1 Introduction

The space-time discontinuous Galerkin scheme for shallow water waves pre-
sented in chapter 2 is thoroughly verified and validated by considering a
number of demanding test cases. The numerical scheme is first verified by
comparing the numerical results against some exact solutions. Next, we
simulate the harmonic modes of linearized (rotating) shallow water equa-
tions, which includes Kelvin and Poincaré modes under low amplitude for a
number of time periods to show qualitatively that the scheme has minimal
dispersion error and dissipation. To validate the scheme, we consider shal-
low water flows where the energy is dissipated in the presence of bores or
jumps and generate PV anomaly in the case of non-uniform bores (see Pere-
grine [48] and Pratt [49]). Such bore-vortex interactions are considered as
necessary, advanced and demanding test cases in which non-uniform bores
are formed and subsequently PV is generated (see, Hu [25]). To show the
versatility of the present scheme in dynamic domains, We conside of nearly
linear and highly nonlinear waves in a wave basin by prescribing the mo-
tion of a flexible domain wall as a wave maker. Finally, we also validate
the method qualitatively with an interesting laboratory experiment.
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3.2 Boundary conditions

For many numerical examples considered here, the implementation of the
boundary condition was very crucial in the numerical scheme. To ex-
plain the implementation, let Ul = (hl, hlul, hlvl)T be the trace taken
from inside the element Kl connected to the boundary face Sm ∈ Γbou,
Ub = (hb, hbub, hbvb)T the boundary data applied at the boundary face Sm

and nl
K = (nt, ñK)T the outward unit normal vector of the face Sm w.r.t.

element Kl. We have implemented the different boundary conditions given
Ul as follows:

Open flow boundary: At an open flow boundary, we simply take Ub =
Ul.

Solid wall: Consider the momentum equations in primitive variables u as

∂tu + (u · ∇)u = −fu⊥ − g∇(h + hb) (3.1)

with u⊥ = (−v, u)T . Taking the dot product of (3.1) with the normal
vector n̄ = (nx, ny)

T and using the zero normal velocity u · n̄ = 0
at the wall, we find the following geostrophic balance condition on
the resultant tangential velocity component on a linear piece of the
boundary:

f u · t̄ = gn̄ · ∇(h + hb). (3.2)

When f = 0 we find n̄ · ∇(h + hb) = 0. The velocity is decomposed as
follows

u = (u · n̄) n̄ + (u · t̄) t̄ (3.3)

with t̄ = (−ny, nx) the tangential vector. For the numerical imple-
mentation, we use the ghost value Ub. Rather than using u · n̄ = 0
and n̄ · ∇(h + hb) = 0 when f = 0, we enforce ub · n̄ = −ul · n̄ and
ub · t̄ = ul · t̄ to obtain

hb = hl; ub = (n2
y − n2

x)ul − 2nxnyv
l and vb = (n2

x − n2
y)v

l − 2nxnyu
l.

(3.4)
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For f 6= 0, the situation appears ambiguous. We took

hb = hl; (ub, vb) = −(ul, vl) + (−ny, nx)(2g/f)
(

n̄ · ∇̄(h + hb)
)

. (3.5)

such that ub · n̄ = −ul · n̄ and ub · t̄ = −ul · t̄ + 2 (g/f) n̄ · ∇̄(h + hb).

Moving wall: At a moving wall boundary we impose in space-time

Ub · n = −Ul · n, Ub · t1 = Ul · t1 and Ub · t2 = Ul · t2, (3.6)

where t1 and t2 are unit tangential vectors orthogonal to each other
and to the normal vector n such that t1 × t2 = n. Solving (3.6)
simultaneously and substituting the relation t1 × t2 = n, we obtain

hb = (−n2
t + n2

x + n2
y)h

l − (2ntnx)hlul − (2ntny)h
lvl,

hbub = (−n2
x + n2

t + n2
y)h

lul − (2ntnx)hl − (2nxny)h
lvl,

hbvb = (−n2
y + n2

t + n2
x)hlvl − (2ntny)h

l − (2nxny)h
lul. (3.7)

3.3 Verification

In all the numerical experiments, we work with non-dimensionalized shallow
water equations as stated in section 2.2. Errors of the numerical results
include the L2(Ωh) and L∞(Ωh) norms

‖Error‖L2(Ωh) :=
(

∑

K

∫

Kn
k

(Uexact − Uh)
2dK

)1/2
, (3.8)

‖Error‖L∞(Ωh) := max
K

(

max
x∈Kn

k

‖Uexact − Uh‖
)

, (3.9)

where the maximum max‖·‖ is based on local Gauss integration points
within the element Kn

k , and Uexact and Uh are exact and numerical solu-
tions, respectively. The order of accuracy “order” of the method is obtained
as

order =
(

ln(‖Error‖(1)) − ln(‖Error‖(2))
)

/
(

ln(h
(1)
K ) − ln(h

(2)
K )

)

, (3.10)

where ‖Error‖(1) and ‖Error‖(2) are the errors computed on the meshes with

cell measures h
(1)
K and h

(2)
K , respectively. While computing the order of

accuracy, we have refined the space-time mesh uniformly in both space and
time.
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3.3.1 Burgers’ solution

The one dimensional shallow water equations with hb = 0 take the form of
Burgers’ equation ∂tq + q∂xq = 0, when one of its Riemann invariants is
taken constant as u+2

√
gh = c with q(t, x) = c− 3

√
gh. A solution can be

constructed as h(t, x) = (q(t, x)−c)2/(9g) and u(t, x) = (c+2q(t, x))/3 from
the implicit solution q(t, x) = q0(x

′

), x = x
′

+q0(x
′

)t, where q(0, x) = q0(x)
is the initial condition. For an initial condition q0(x) with dq0/dx < 0
somewhere, wave breaking occurs at time tb = −1/ min(dq0/dx).
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Figure 3.1: (a) Comparison of exact and numerical solutions of water depth
h(t, x). (b) Plot of the discontinuity detector. Computations are performed
on an irregular grid of 160×160 elements from t = 0 to the time of breaking
tb ≈ 0.3 and tb < t < 1. Irregular grids are made by a slight, random
perturbation of the interior grid points of a rectangular mesh.

We chose c = 3, q0(x) = sin(πx) with x ∈ [0, 2] and used periodic
boundary conditions in x. The space-time profile of water depth for the
exact and numerical solutions are shown in Fig. 3.1(a). The smooth initial
condition develops into a discontinuity in a finite time t < tb = 1/π at
x = 1. We can thus test Krivodonova’s discontinuity detector, which shows
no sign of discontinuity in the beginning and gradually detects the regions
with sharp gradients to finally detect discontinuities as shown in Fig. 3.1(b).
Before breaking, we compute several errors for mass, h, and momentum,
hu, on various meshes and plot them on a log-log scale in Figs. 3.2(a,b).
They indicate that the method is second order accurate in space and time.
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Figure 3.2: (a) Log-log plot of the ‖Error‖L2(Ωh) versus grid size h at
t = 0.2. The average slope of the curves is 1.955, 1.7875, 1.83 and 1.795
for h and hu on regular and irregular grids, respectively. (b) Log-log plot
of the ‖Error‖L∞(Ωh) versus grid size h at t = 0.2. The average slope of the
curves is 1.32, 1.39, 1.16 and 1.39 for h and hu on regular and irregular
grids, respectively. Regular grids are tessellated with 10, 20, 40, 80 and
160 elements and irregular grids with 10 × 10, 20 × 20, 40 × 40, 80 × 80
and 160 × 160 elements. Computations are performed with time steps
∆t = 0.05, 0.025, 0.0125, 0.0625 and 0.003125 from coarse to fine grids.

3.3.2 Dispersion and dissipation error

To quantitatively verify the Fourier analysis, we consider the following
harmonic wave type solution based on (2.67) in a domain [0, Lx] with
h(t, x) = H + A sin(kx + ωt) and velocity corresponding to the real part of
(2.68). In section (4.2), we have presented the discrete Fourier analysis of
equations (2.67) to determine the numerical frequency ω1 and the numeri-
cal dissipation ω2 of a given harmonic wave from (2.77). Here, we initialize
with the harmonic wave solution based on (2.67) in the nonlinear numeri-
cal code, for small amplitude, and compare our numerical simulations both
with the exact solutions and discrete Fourier solutions. The discrete Fourier
solutions can be simply given by replacing frequency ω by ω1 and amplitude
A by A exp(−ω2t). Figs. 3.3(a,b) show the exact and numerical solution at
t = 3.0 for f = 2π, respectively. Observe the phase decay of amplitude of
the waves in Fig. 3.3. We conclude that our numerical scheme confirms the
Fourier analysis.
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Figure 3.3: Free surface plots showing a) the dissipation in a comparison of
the exact versus exact discrete and numerical solution and b) the dispersion
of the exact discrete and numerical solution for f = 2π, k = 2π, g = 1 and
H = 1 with ω1 = 8.3535 and ω2 = 0.73235 for ∆x = 0.025 and ∆t = 0.25.
We purposely chose a case with strong dissipation for illustrative purposes.

3.3.3 Poincaré and Kelvin waves

Poincaré and Kelvin wave solutions arise when we solve the linearized rotat-
ing shallow water equations in rectangular channel and circular basins. We
simulate the non-linear counterparts of these harmonic waves at low ampli-
tude for a number of time periods to show the dispersion and dissipation
error.

Rectangular channel

Both Poincaré and Kelvin waves [47] are simulated for ten time periods in a
rectangular channel periodic in x. Dispersion errors and dissipation errors
are observed in the numerical solutions displayed in Figs. 3.4 and 3.5.

Circular basin

We numerically simulate Poincaré and Kelvin waves [35], the former from
t = 0, ..., 10T with T = 2π/ω = 0.7217287851 in a circular basin. Figs. 3.6
show contour plots of the free surface for Poincaré waves and the difference
between the exact linear and numerical nonlinear solutions. Differences are
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Figure 3.4: Contour plots of the free surface for Poincaré waves a)
at t = 0.0 and b) at t = 10T . The linear wave amplitude is
A(ωl cos(ly)+fk sin(ly)) sin(kx+ωt) with wave numbers k, l, and frequency
ω =

√

f2 + a2 (k2 + l2). The wave amplitude is 10−5, zonal and meridional
wave numbers are m = n = 1, g = H = 1, and f = 3.193379349. Simulated
on a mesh of size 80 × 40 elements with CFL∆t = 1.0.
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Figure 3.5: Contour plots of the free surface for Kelvin waves a) at t = 0.0
and b) at t = 10T . Linear wave amplitude is A(cosh(ly)+sinh(ly)) sin(kx+
ωt) with wave amplitude A = 0.001, l = f/a, ω = a k, zonal wave number
m = 2, g = H = 1, and f = 3.193379349. Simulated on a mesh of size
80 × 40 elements with CFL∆t = 1.0.
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small as expected for small-amplitude waves.

0.995 0.9975 1 1.0025 1.005

Time t= 7.21729

(a) Final profile.

6E05 3.6E05 1.2E05 1.2E05 3.6E05 6E05

(b) Difference.

Figure 3.6: Contour plots of a) free surface of the Poincaré waves, and
b) the difference between linear exact and nonlinear numerical solutions
after ten time periods. Linear wave amplitude is AJm(kr) sin (mθ + ωt)
with Bessel function Jm(kr), radius r, azimuth θ, domain radius R = 1,
azimuthal wave number m = 1, f = 1.596689674, A = 0.01, H = 1, R = 1,
g = 1, radial wave number k = 8.558068886 obtained from the boundary
condition, and ω = 8.705742988.

The Kelvin wave mode has a time period T = 2π/ω = 7.356451577 and
we numerically simulate these waves from t = 0, ..., 5T (see Figs. 3.7).

3.3.4 Moving grid simulations

Harmonic wave maker

Consider the linearized shallow water equations ∂tη + H ∇̄ · u = 0 and
∂tu + g∇̄η = 0 in a rectangular basin of size [(0, Lx)× (0, Ly)] with a solid
wave maker at the boundary xE(t, y) = Lx+xm(t, y), fixed solid walls on the
remaining boundaries, free surface perturbation η(x) around a mean surface
H, and velocity field (u(x), v(x)). After applying the kinematic boundary
condition at the wave maker and linearizing the resulting expression, we



54 Chapter 3: Applications to Geophysical Flows

0.9965 1.0000 1.0035

Time t = 36.782

(a) Final profile.

0.00015 0 0.00015

(b) Difference.

Figure 3.7: Contour plots of a) free surface of the Kelvin waves, and b)
difference between linear exact and nonlinear numerical solutions at t =
5 T . Linear wave amplitude is AIm(kr) sin (mθ + ωt) with modified Bessel
function Im(kr), m = 4, f = 1.596689674, A = 10−5, R = 5, g = H = 1,
k = 1.349044778 and ω = −0.8541054396.
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obtain ∂txm = u(t, x = Lx, y). A linear gravity-wave type solution follows
as

(η(x), xm(t, y)) = η0

(

cos(kx),−g k sin(kLx)/ω2
)

cos(ly) sin(ωt),

(u(x), v(x)) = −g kη0(k, l) sin(kx) cos(ly) cos(ωt)/ω,
(3.11)

where η0 is the amplitude of the harmonic free surface waves, ω the fre-
quency determined from the dispersion relation ω2 = g H (k2 + l2) once
l = nπ/Ly the wave numbers along y and k = mπ/Lx along x are known,
with n an integer and m a real number.

We initialize the nonlinear equations using the gravity wave solution
(3.11) at t = 0, and prescribe the movement of the wave maker at x = Lx

to simulate the waves induced. To maintain elements of regular size, we
move the nodes of the grid by linearly interpolating between the wave maker
and the solid wall at x = 0. Thus, given the coordinates of a node at time
tn−1, it is straightforward to determine these at time tn. We simulate the
nonlinear waves generated by the harmonic wave maker for low and high
amplitudes. At low amplitude, we see that harmonic waves in the wave
maker agrees qualitatively with the solution (3.11), see Figs. 3.8 and at
high amplitudes, these harmonic waves start to break due to non-linearity
and moving bores are formed, see Figs. 3.9. For low amplitude the energy
stays essentially constant, while for high amplitude the energy fluctuates
but initially decreases on average due to wave breaking, see Figs. 3.10.

3.4 Validation

In this section, we validate numerical simulations of bore-vortex interac-
tions against the qualitative analytical predictions of PV anomaly from the
expression (2.10). In each of the three cases presented, there is initially
no PV, but PV is generated through the passage of a non-uniform bore.
We verified the simulations against Tassi et al.’s [57] who used a space DG
method.
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Figure 3.8: Contour plots of water depth h for a time period T = 2π/ω =
1.0. Parameters g = 1, H = 1, η0 = 0.001, n = 1 and m =

√
3 such that

ω = 2π. At t = T/2 and T , the free surface is nearly flat.
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Figure 3.9: Contour plots of water depth h for a time period T = 2π/ω =
1.0. Parameters g = 1, H = 1, η0 = 0.5, n = 1 and m =

√
3 such that

ω = 2π.
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Figure 3.10: Plots of the energy as a function of time in the wave maker
test.

3.4.1 Non-linear breaking shallow water waves

We consider the linear gravity wave solution

η(x) = A sin(ly) sin(kx + ωt),

(u(x), v(x))T = Ag (−k sin(ly) sin(kx + ωt), l cos(ly) cos(kx + ωt))T /ω

(3.12)

in a rectangular domain of size [Lx, Ly] periodic in x with solid walls along
y, k = 2πm/Lx, l = (2n + 1)π/Ly, and ω2 = gH(k2 + l2). The nonlinear
numerical discretization is initialized with this linear solution (3.12) at t =
0.0 with A = 0.01, g = H = 1, m = 2 and n = 0.

Due to non-linearity, these higher amplitude gravity waves start to break
around t ≈ 0.5, which can be confirmed from the energy-time graph shown
in Fig. 3.12(a). The breaking of the waves is first seen at the peak of crests
and troughs of the free surface near to the walls, see Fig. 3.11(a) and (b).
As seen in Fig. 3.13(a), the breaking extends to the interior and moving
bores are formed which are aligned in the y–direction with some curvature.
Since the non-uniform depth profile of the bore appears to be preserved in
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time, we estimate its upstream and downstream depths from (3.12) as

h1(ŷ) = H − ηD(ŷ) and h2(ŷ) = H + ηD(ŷ), (3.13)

respectively, with ηD(ŷ) = |Â| sin(πŷ), Â the amplitude and ŷ the axis
aligned along the bore neglecting the curvature of the bore. These bores
are traveling in the negative x–direction with their axis ŷ roughly parallel
to the direction of y–axis. Substituting the depths (3.13) in (2.10), we get
the PV generation behind the bore as

∆Π = Π1 − Π2 =
2gη2

D(3H2 − η2
D)

(H2 − η2
D)2

(−1

Q

dηD

dŷ

)

. (3.14)

For −0.5 < y < 0, we have dηD/dŷ > 0, h1 > h2, Q < 0 and ∆Π > 0;
and for 0 > y > 0.5, we have dηD/dŷ > 0, h1 < h2, Q > 0 and ∆Π < 0 .
Hence, the PV generated in Fig. 3.13(b) has a positive sign on the positive
y axis and vice versa. Also see the zonal average of PV along the grid
lines parallel to x–axis in Fig. 3.12(b). This qualitatively validates the
bore-vortex anomaly discussed in section 2.2.

The bores formed are simulated till t = 25 when they have dissipated
their energy as seen in Fig. 3.12(a). As a result, we see a PV jet formation
near to the walls, shown in Fig. 3.13(d) to 3.13(f). Due to energy dissi-
pation, the strength of the bores gradually decreases as in Fig. 3.13(a) to
3.14(a), and finally the bores disappear in Fig. 3.14(c) to 3.14(e). Although
the bores disappear, the jet remains since PV is materially conserved (see
Figs. 3.14(d) to 3.14(f)).

3.4.2 Bore propagation over a mound

Conical shaped mound

Matsutomi and Mochizula [40] conducted experiments to study the behav-
ior of a bore propagating over a conical shoal and Hu [25] conducted numer-
ical simulations of these experiments. We show similarly that the correct
PV anomaly is generated in our numerical simulation due to non-uniform
energy dissipation along the bore.

Consider the dam-break initial condition h(0, x̄)+hb(x̄) = hL for x < xc,
h(0, x̄)+hb(x̄) = hR for x > xc and water at rest u(0, x̄) = 0, where x = xc
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Figure 3.11: Free surface height of the water at a) t = 0.0 and b) t= 0.5.

is the discontinuity in a rectangular channel of size [0, Lx] × [0, Ly]. Let
an isolated conical shaped mound be situated with its center at x̄m =
(xm, Ly/2), radius Rm, height Hm. The bottom topography in the channel
is

hb(x) =







Hm − Hm

Rm
|x̄ − x̄m|, if |x̄ − x̄m| ≤ Rm and

0.0, if |x̄ − x̄m| > Rm.
(3.15)

The boundaries of the domain consist of solid walls except for an open
boundary at x = Lx.

When the dam collapses, a bore with uniform jump is generated which
propagates towards and over the conical hump, see Fig. 3.15, and dissi-
pates energy uniformly along its length. When the bore reaches the conical
hump energy dissipation becomes non-uniform and the approximate PV
generation (2.10) across the bore is

Π1 − Π2 ≈ ED

Q

( 1

h1
+

1

h2

)

(−∂yhb), (3.16)

with h1 ≈ hL − hb and h2 ≈ hR − hb, since we always observe a nearly
uniform jump in the free surface along the bore in our numerical simulations
and ŷ is aligned with y. For y > Ly/2, we have −∂yhb > 0 and vice versa
for y < Ly/2. Hence, a positive PV anomaly arises for y > Ly/2 and a
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negative one for y < Ly/2 after the bore has passed. This is confirmed in
the contour plots of PV shown in Fig. 3.16: a positive vortex and PV are
found for y > L/2 and vice versa for y < L/2 after the bore’s passage.
Thereafter, these PV anomalies are advected along, cf. (2.5).

Gaussian shaped mound

In this test case, we also consider an initial dam break as h(0, x̄) + hb(x̄) =
hL for x < xc, h(0, x̄)+hb(x̄) = hR for x > xc and water at rest u(0, x̄) = 0.
The discontinuity in the free surface lies thus at x = xc in a rectangular
channel of size [0, Lx] × [0, Ly]. It has solid wall boundaries except for an
open flow boundary at x = Lx. The bottom topography consists of an
isolated Gaussian shaped mound with a peak at x̄m = (Lx/2, Ly/2):

hb(x) = Hm exp(−cm|x̄ − x̄m|2), (3.17)

where Hm is the height of the Gaussian mound and cm a constant.
When the initial dam collapses, a bore with a uniform jump is generated

which propagates towards the Gaussian mound, see Fig. 3.17. As the bore
reaches the Gaussian mound, we deduce from (3.16) that the potential
vorticity generated behind the bore must have positive sign for y > Ly/2
as ∂yhb < 0 and negative sign for y < Ly/2 as ∂yhb > 0. Hence, the PV
generated and seen in Fig. (b) and (c) agrees with the observed one. Once
the bore crosses the peak of the hump, a hydraulic jump facing backwards is
formed which can be seen as a depression in Fig. 3.17. Thus, it can likewise
be deduced that PV anomalies are generated at the hydraulic jump with
opposite signs to the initial PV generated at the bore, which is confirmed
in Fig. 3.18(d).

3.5 Experimental validation

3.5.1 Flow through a contraction

Shallow water flows through a contraction can under certain flow rates
and Froude numbers develop steady oblique hydraulic jumps. Akers [1]
conducted laboratory experiments under different flow rates and Froude
numbers, and compared them with steady state solutions. His experimental
setup consisted of a narrow flume of length L = 110 cm. The width of the
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flume starts decreasing linearly at L0 ≈ 79.5 cm from b0 = 20 cm at the
beginning of the contraction or inlet to bc = 12 or 14 cm at the end of the
flume or outlet. The steady state state shown in Fig. 3.5.1(a) is reached
experimentally with a constant inflow of water with depth h0 and velocity
u0 such that the Froude number F0 = u0/

√
gh0 = 3.65 at the inlet and

bc = 14 cm. From the shock relations [55] for the shallow water system
(2.1), neglecting friction, the jump ratio and angle of the hydraulic jump
can be calculated as steady state solutions following [55]. We find (Al-
Tarazi et al. [66]) that

h1

h0∗
=

tan θs

tan(θs − θc)
and sin θs =

√

1

2F 2
0∗

h1

h0∗

(

1 +
h1

h0∗

)

, (3.18)

where F0∗ is the uniform upstream Froude number, h0∗ and h1 are the up-
stream and downstream depths of the oblique jump, and θc and θs are the
angle of the contraction and the jump measured relative to the horizontal
wall of the flume. The two relations in (3.18) can be combined such that
given the uniform upstream conditions u0∗, h0∗, F0∗ and the angle θc of the
contraction, we can entirely determine the conditions u1, v1, h1, θs down-
stream of the oblique jumps. In experiments, due to friction, the Froude
number will decrease in the downstream direction, so we use the Froude
number and water depth just before the jump as F0∗ and h0∗ in (3.18)
to obtain an approximate solution. For increasing Froude numbers, the
shocks cross within the contraction, the shallow water analogy of a Mach
stem appears, and for even higher Froude numbers an upstream moving
bore forms.

For theoretical and numerical calculations, the shallow water equations
are non-dimensionalized as follows:

h′ =
h

b0
, (u′, v′) =

(u, v)

u0
, (x′, y′) =

(x, y)

b0
, t′ =

t

T
, and C ′

D =
CDb0

h0

(3.19)

with T = b0/u0. After using (3.19) and dropping the primes, the shallow
water equations effectively become (2.1) with g = 1/F 2

0 . We used a zero
velocity and constant depth H as the initial conditions and inflow, outflow
and solid wall boundary conditions. The simulation was run to steady state.
To mimic the experimental initial condition H = 0, we take H ≪ h0 due
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to which negative depths can occur numerically. The negative depths are
corrected by setting the slopes of the approximated depth to zero. After
some time, the effect of this correction vanishes and we achieve the steady
oblique hydraulic jumps in our simulations as shown in the Fig. 3.5.1(b)
with the jump angle similar to the experimental results. Since for the exper-
iment in Fig. 3.5.1(a) the jump ratio is not given, we use the experimental
result in which the jump ratio h1/h0 = 1.76 and the jump angle θs = 25.2◦

are measured by Akers [1] with the width of the contraction bc = 12 cm
and the Froude number at the inlet F0 = 3.65. For this experimental
case, we obtain h1/h0 = 1.623 ± 0.003 and θs = 25.50 ± 0.40◦, numerically
with an optimized choice of CD = 0.0012; and h1/h0 = 1.624 ± 0.004 and
θs = 25.41◦ ± 0.13◦ using the analytical solution (3.18) with the Froude
numbers in the contraction.

3.6 Concluding remarks

We have thoroughly verified the present method by testing the order of
accuracy and the application of the discontinuity detector in combination
with the dissipation operator. The method was second-order accurate in
space in both L2 and L∞ norms for a linear polynomial approximation
of flow fields. We simulated small-amplitude gravity, Kelvin and Poincaré
wave solutions for a number of time periods to observe only small dispersion
and dissipation errors. Of special importance was the validation of the nu-
merical discretization by simulating bore-vortex interactions, which could
be compared with analytical results on the generation of PV anomaly by
non-uniform bores. The relevance of these bore-vortex interactions in test-
ing numerical schemes has been promoted in work by Hu [25] (report) and
Peregrine [48]. Three demanding cases were considered in section 3.4: PV
and shear formation by breaking waves in a periodic channel, and the gen-
eration of PV and vortices by an initially uniform bore over non-uniform to-
pography. We also successfully validated the numerical shallow water code
against laboratory data (Akers [1]) of oblique hydraulic jumps or “shocks”
for hydraulic shallow flow through a contraction. Finally, the versatility of
the present method in dynamic domains has been demonstrated numeri-
cally in section 3.3.4. We considered the generation of nearly linear and
highly nonlinear waves by prescribing the motion of a flexible domain wall
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as a wave maker. It showed that the space-time DG method seems well
suited for improved simulation of run-up and backwash on beaches ([11])
and in flood prediction.
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Figure 3.12: Shown are a) the energy E = E(t) =
∫

Ω Ẽ(x, t) dxdy (cf.
2.4) as function of time, b) profiles of PV averaged along the channel as a
function of y, c) profiles of u averaged as a function of y at various times.
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Figure 3.13: a) Free surface height of the water and b) shadow graph of the
PV generated at t = 1.0. Observe the PV generation has opposite signs.
c,d) Same at t = 2.5. e,f) Same at t = 5.0.



3.6 Concluding remarks 67

X

0

0.2

0.4

0.6

0.8

1

Y

0.4

0.2

0

0.2

0.4

0.9

1

1.1

0.91 0.94 0.97 1 1.03 1.06 1.09
t = 10

(a)

X

Y

0 0.2 0.4 0.6 0.8 1

0.4

0.2

0

0.2

0.4

0.02 0.01 0 0.01 0.02

t = 10

(b)

X

0

0.2

0.4

0.6

0.8

1

Y

0.4

0.2

0

0.2

0.4

0.9

1

1.1

0.91 0.94 0.97 1 1.03 1.06 1.09
t = 20

(c)

X

Y

0 0.2 0.4 0.6 0.8 1

0.4

0.2

0

0.2

0.4

0.02 0.01 0 0.01 0.02

t = 20

(d)

X

0

0.2

0.4

0.6

0.8

1

Y

0.4

0.2

0

0.2

0.4

0.9

1

1.1

0.91 0.94 0.97 1 1.03 1.06 1.09

t = 25

(e)

X

Y

0 0.2 0.4 0.6 0.8 1

0.4

0.2

0

0.2

0.4

0.02 0.01 0 0.01 0.02

t = 25

(f)

Figure 3.14: a) Free surface height of the water and b) shadow graph of the
PV generated at t = 10. c,d) Same at t = 20. e,f) Same at t = 25.
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Figure 3.15: A bore propagates over a conical mound: profiles of the free
surface h+hb are shown at y = 1.3 from time t = 0 to 10 with steps of 0.5.
Topography hb is also displayed.
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Figure 3.16: Conical mound case. Shown are contour plots of the PV at
times t = 0, 2, 4, 6, 8, and 10. Note that PV is zero at t = 0. Computations
are performed on a grid of size 200× 130. Parameters are Lx = 4.0, Ly =
2.6, xm = 2.5, Rm = 1.2 and Hm = 0.012.
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Figure 3.17: A bore propagates over a Gaussian mound: free surface pro-
files are shown at y = 1.75 from time t = 0 to 10.
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Figure 3.18: Gaussian mound case. Displayed are contour plots of PV at
various times. Note that initially PV is zero. Computations are performed
on a grid of size 175 × 175. We chose Lx = Ly = 3.5, xc = 0.5, hL = 0.11,
hR = 0.02, Hm = 0.01 and cm = 12.5.
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Figure 3.19: a) Experimental: Steady oblique hydraulic jumps formed in
the contraction with bc = 14 cm and the Froude number at the inlet F0 =
3.65. Measured jump angle θs = 23.61◦. b) Numerical: Steady oblique
jumps formed in the contraction with friction coefficient CD = 0.00012.
Observed are the jump ratio h1/h0 = 1.471±0.003 and the jump angle θs =
23.27◦ ± 0.34◦. Theoretical calculations show a jump ratio h1/h0 = 1.49 ±
0.003 and a jump angle θs = 23.65◦ ± 0.09◦. The computational domain is
non-dimensionalized with the flume width b0 = 20 cm and tessellated with
40 × 40 elements in the inlet section, 40 × 40 elements in the contraction
section and 40 × 20 elements in the outlet section. We provide an outlet
section of length 20 cm with a linearly increasing width from bc to b0 to
achieve the critical condition at the exit of the contraction.



Chapter 4
Variational Space-time
(Dis)continuous Galerkin
Method for Linear Free
Surface Waves

4.1 Introduction

A large class of water wave problems is captured by a model that consists
of a potential flow equation coupled with nonlinear free surface boundary
conditions. These equations are obtained from the Euler equations of fluid
motion with the assumptions that the fluid is inviscid and incompressible,
and the velocity field irrotational (see Johnson [27]). This model proves
useful in studying many marine and offshore engineering problems such as
the wave induced motion of ships and the control of wave generation by
wave makers in laboratory basins.

The free surface gravity water wave equations are obtained in a succinct
way via Luke’s variational principle [39]. The essence of the variational prin-
ciple is that the complete problem can be expressed in a single functional.
In addition, the variational formulation is associated with the conservation
of energy and phase space, under suitable boundary conditions. Variational
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formulations also provide a basis for the construction of approximate finite
element solutions. Such variational finite element methods for free surface
waves can be found in Bai and Kim [8], Kim and Bai [28] and Kim et
al. [29]. Klopman et al. [32] derive a variational Boussinesq model from
Luke’s variational principle; in essence their Boussinesq model is a verti-
cal discretization thereof. It motivated us to investigate a (dis)continuous
Galerkin finite element method based on a discretization of Luke’s vari-
ational principle. Such a discretization aims to preserve the variational
structure and the associated energy and phase-space conservation.

Standard finite element element methods for free surface gravity water
waves are relatively new and can be found in [18, 41, 42, 43, 68, 70, 71].
Another widely used numerical method for free surface waves is the bound-
ary integral method which started with the work of Longuet-Higgins and
Cokelet [38], and Vinje and Brevig [67]. This method has been applied
extensively to two dimensional free surface waves, see the surveys of Ro-
mate [51] and Tsai and Yue [62]. Applications in three dimensions (3D)
using boundary integral methods include [16, 51, 10]. The discontinuous
Galerkin (DG) methods for elliptic problems proposed by Arnold et al. [5]
and Brezzi [15] have enabled researchers to model free surface water waves
using a space discontinuous Galerkin method. The space DG finite element
method for free surface wave problems can be found in van der Vegt and
Tomar [63] and Tomar and van der Vegt [59]. Van der Vegt and Xu [65]
have subsequently proposed the space-time DG method for three dimen-
sional nonlinear free surface waves. However, DG methods for free surface
waves based on its variational formulation appear to be non-existent.

Nonlinear free surface gravity water wave equations are difficult to solve
because the solution to the governing equations depends on the position of
the free surface which is not known apriori. To deal with such difficulties,
we choose a space-time approach which is particularly suited for problems
with time dependent boundaries (see van der Vegt and van der Ven [64],
Ambati and Bokhove [4], van der Vegt and Xu [65]).

DG methods have several advantages, as follows:

(i) the scheme is local in the sense that the solution in each element only
depends on its neighboring elements via the flux through element
boundaries and is thus suitable for parallelization;

(ii) the scheme is extendable to have hp–adaptivity in which the fluid



4.1 Introduction 75

flow field approximation can arbitrarily vary per element, known
as“p–adaptivity”, and the mesh can be locally refined, called “h–
adaptivity”.

Developing a space-time DG finite element scheme faces additional dif-
ficulties because

(i) it is nontrivial to develop an efficient solution technique for the nonlin-
ear algebraic equations resulting from the discretization,

(ii) it is complicated to handle the grid deformation due to the nonlinear
free surface evolution.

We therefore first consider the development of a variational space-time
(dis)continuous Galerkin finite element method (DGFEM) for linear free
surface gravity water waves based on Luke’s variational principle.

In a variational space-time (dis)continuous Galerkin method, the do-
main is split into space-time slabs which are tessellated with space-time
finite elements. On these elements, we define local basis functions to ap-
proximate the wave field and, define the test functions and variations. The
local basis functions are defined such that the approximation of the wave
field is discontinuous in space, but continuous in time. This kind of approx-
imation is mainly chosen to satisfy the requirement of zero variation of the
velocity potential at the end points in time.

The space-time variational formulation for this problem is obtained in
two steps. In the first step, we establish a relation between the velocity
field and velocity potential through the primal formulation given in Arnold
et al. [5] and Brezzi et al. [15]. In the second step, we consider a discrete
functional which is analogous to the continuum functional for linear free
surface waves. Subsequently, we use Luke’s variational principle to obtain
a discrete variational problem for the linear free surface wave problem.

The space-time discretization of the discrete variational formulation for
linear free surface waves results into a linear algebraic system of equations.
The global matrix of this linear system has a very compact stencil, i.e., the
number of non-zero entries in each row of the matrix only depends on the
number of neighbors of an element. Further, the linear system is symmetric
and we can therefore use an efficient sparse matrix storage routine and an
(iterative) sparse linear solver. The requirement to use efficient solver led us
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to the PETSc package (see [52, 53, 54]) for assembling and solving the linear
system of algebraic equations. The software library of PETSc has a large
suite of well-tested sparse matrix storage routines and (iterative) sparse
linear solvers with the extra advantage of parallelization options. Hence,
we have incorporated the PETSc package in our numerical implementation.
Within PETSc, we have used an efficient block sparse matrix storage routine
for assembling the global matrix and a conjugate-gradient solver with ILU
preconditioner for solving the linear system.

We have compared the variational space-time (dis)continuous Galerkin
method with the “standard” space-time discontinuous Galerkin method
developed by van der Vegt and Xu [65]. Hence, we also discuss the space-
time discontinuous Galerkin method, which numerical implementation we
extended to three space dimensions. The numerical results from both the
variational and standard space-time (dis)continuous Galerkin methods are
compared with two exact solutions: linear harmonic waves in a periodic
domain and linear waves generated in a wave basin. We found for all the
three dimensional test cases that both the numerical schemes are second
order accurate for a linear polynomial approximation of the wave field. We
also compare the present numerical scheme with the space-time DG scheme
proposed by van der Vegt and Xu [65].

This chapter is organized as follows. We present Luke’s variational
formulation for linear free surface wave problem and subsequently derive
the governing equations in §4.2. Tessellation of space-time domain, and
the required function spaces and trace operators for the space-time finite
element formulations are presented in §4.3. We present the standard and
variational space-time (dis)continuous Galerkin finite element formulations
of the linear free surface wave problem next in §4.4 and §4.5, respectively.
Numerical results of the standard and variational space-time discontinuous
Galerkin schemes are presented and compared in §4.6. Conclusions are
drawn in §4.7.

4.2 Linear free surface gravity water waves

In fluid dynamics, the governing equations for free surface gravity water
waves are derived from the incompressible Euler equations of fluid motion
(see Johnson [27] or Whitham [69]). These governing equations can, how-
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ever, also be derived from Luke’s variational principle [39]. The advantage
of using this principle is that the governing equations are obtained from
a single energy functional. Conservation laws are thus directly associated
with this variational principle via Noether’s theorem. We therefore derive
the linear free surface gravity water wave equations using Luke’s variational
principle.

4.2.1 Luke’s variational principle
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Figure 4.1: A sketch of the domain and its boundaries for the linear water
wave problem including the waves generated by a wave maker. The flat
mean free surface (top) and the fixed solid wall (left) for the wave maker
arise as the fixed boundaries due to the linearization of the nonlinear free
surface and the surface of the moving wave maker.

Consider an incompressible and inviscid fluid in a domain Ω ⊂ R3 with
boundaries ∂Ω = ∂ΩS ∪ ∂ΩB ∪ ∂ΩL as shown in Fig. 4.1, where ∂ΩS is
the free surface, ∂ΩB is the rigid bed, and ∂ΩL denotes lateral boundaries.
Assuming a non-overturning free surface, we parameterize the free surface
as z = η(t, x, y), where η(t, x, y) is a perturbation of the free surface around
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a mean free surface located at z = 0 and measured at a height H(x, y) from
the rigid bottom surface ∂ΩB.

For free surface gravity water waves, it is justified to assume the flow
field to be irrotational. It guarantees the existence of a velocity potential φ.
Hence, u = ∇̄φ such that ∇̄ × u = 0 with ∇̄ = (∂x, ∂y, ∂z)

T , u = (u, v, w)
the velocity field, and u, v and w the components of the velocity in the x,
y and z direction, respectively. We assume the perturbations of the free
surface wave height η and the velocity potential φ to be of small amplitude.
After linearization, the mean free surface ∂ΩS instead of actual free surface
and solid (vertical) walls ∂ΩL instead of the wave makers emerge as the
boundaries of the flow domain ∂ΩS (see Fig. 4.1) for the linear problem.

To facilitate the use of Luke’s variational principle, we first introduce
a horizontal cross section of the flow domain Ω as Ω̄(z) such that the flow
domain Ω is obtained as

Ω := {(x, y, z)| 0 < z < −H and (x, y) ∈ Ω̄(z)}. (4.1)

Next, we define the kinetic energy EK and potential energy EP of the waves
in the flow domain Ω as

EK :=

∫

Ω

1

2
|∇̄φ|2 dΩ −

∫

∂ΩL

gNφ d(∂Ω) and

EP :=

∫

∂ΩS

1

2
gη2 dx dy (4.2)

with g the gravitational acceleration and gN a prescribed normal velocity
at the lateral boundaries. Finally, we define the functional for linear free
surface waves as

Lf (φ, φs, η) =

∫ T

0

∫

∂ΩS

φs∂tη dx dy dt −
∫ T

0
(EK + EP ) dt (4.3)

with T the final time, φs(x, y, t) = φ(x, y, z = 0, t) the velocity potential
evaluated at the free surface. The functional Lf (φ, φs, η) for the nonlinear
case was originally defined by Luke [39].

The variational formulation for linear free surface waves is as follows:

δLf (φ, φs, η) = 0, (4.4)
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where δLf (φ, φs, η) is the variational derivative. The variational derivative
is defined by

δLf (φ, φs, η) := lim
ǫ→0

1

ǫ

(

Lf (φ + ǫδφ, φs+ǫδφs, η + ǫδη) − Lf (φ, φs, η)
)

(4.5)

with δφ, δφs and δη arbitrary variations of φ, φs and η, respectively. The
variational formulation (4.6) will form the basis to obtain the novel varia-
tional (dis)continuous Galerkin finite element discretization.

Applying Luke’s variational principle (4.4) and using the definition of
the variational derivative (4.5), we get

∫ T

0

(

∫

∂ΩS

(

(∂tη)δφs + φs∂t

)

(δη) dx dy −
∫

Ω
∇̄φ · ∇̄(δφ) dΩ

+

∫

∂ΩL

gNδφ d(∂Ω) −
∫

∂ΩS

gηδη d(∂Ω)

)

dt = 0. (4.6)

To obtain the governing equations for linear free surface waves from the
variational formulation (4.6), we integrate the the second term by parts and
use Gauss’ divergence theorem for the third term, and rearrange the bound-
ary integrals using the end point conditions on the variation δη(x, y, 0) =
δη(x, y, T ) = 0. Hence, from (4.6) we derive

∫ T

0

(

∫

∂ΩS

(

− (∂tφs + gη)δη + (∂tη − ∂zφ)δφs

)

dx dy +

∫

Ω
∇̄2φ δφ dΩ

−
∫

∂ΩL

(ñL∇̄ · φ − gN )δφ d(∂Ω) −
∫

∂ΩB

(ñB · ∇̄φ)δφ d(∂Ω)

)

dt = 0, (4.7)

where ñL = (±1, 0, 0)T and ñB are the outward unit normal vectors at
the boundaries ∂ΩL and ∂ΩB, respectively. Using the arbitrariness of the
variations δφ, δφs and δη in (4.7), the governing equations for linear free
surface gravity water waves emerge

∇̄2φ = 0 on Ω(t),

∂tη − ∂zφ = 0 and ∂tφs + gη = 0 on ∂ΩS ,

ñL · ∇̄φ = gN on ∂ΩL, and ñB · ∇̄φ = 0 on ∂ΩB. (4.8)
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4.3 Basis for space-time formulation

4.3.1 Space-time domain and tesellation

In space-time discontinuous Galerkin methods, we do not distinguish be-
tween space and time, and directly define the space-time flow domain
E ∈ R

4 as

E := {x ∈ R
4 : x̄ ∈ Ω, t0 < t < T )} ⊆ R

4 (4.9)

with x = (t,x) the space-time coordinates, x̄ = (x, y, z) the spatial coor-
dinates, t0 the initial time, T the final time and Ω ∈ R

3 the flow domain.
The space-time boundary ∂E consists of the hypersurfaces Ω0 := {x ∈ ∂E :
t = t0}, ΩT := {x ∈ ∂E : t = T} and Q := {x ∈ ∂E : t0 < t < T}. The unit
outward space-time normal vector of the space-time domain boundary is
defined as n := (nt, n̄) with nt the temporal component and n̄ the spatial
component.

To tessellate the space-time domain E , we first divide the time interval
I = [t0, T ] into NT time intervals with each time interval denoted as In =
[tn−1, tn]. Second, at each time level tn, we tessellate the flow domain Ω with
Ne shape regular spatial elements Kn

k to form a computational flow domain
Ωh such that Ωh → Ω as h → 0, where h is the radius of the smallest sphere
containing all elements Kn

k with k = 1, . . . , Ne. Finally, in each time interval
In, we obtain the space-time tessellation T n

h for the computational space-
time domain En

h which consists of the space-time elements Kn
k obtained by

joining the spatial elements Kn−1
k and Kn

k at the successive time intervals
tn−1 and tn. For linear free surface waves, the computational flow domain
Ωh is fixed in time and hence the corresponding spatial elements Kn−1

k and
Kn

k of the space-time element Kn
k are identical. Hereafter, we thus drop the

superscript n of the spatial element.
To define function spaces and apply quadrature rules, each spatial ele-

ment Kk is mapped onto a reference element K̂ and its mapping FK : K̂ →
Kk is defined as

FK : K̂ → Kk : ζ̄ 7→ x̄ :=
∑

j

x̄j χj(ζ̄) (4.10)

with ζ̄ = (ζ1, ζ2, ζ2) the spatial reference coordinates, x̄ = (x, y, z) the
spatial coordinates, x̄j the nodal coordinates of the spatial element and
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χj(ζ̄) the standard shape functions of element Kk. Subsequently, the space-

time element Kn
k is mapped to a reference element K̂ and its mapping is

defined as

Gn
K : K̂ → Kn

k : ζ 7→ x :=
(1

2

(

(1 + ζ0)tn + (1 − ζ0)tn−1)
)

, FK(ζ̄)
)

)

(4.11)

with ζ = (ζ0, ζ̄) the space-time reference coordinates.
In the space-time tessellation T n

h , we further define interior faces Sint,
which connect two space-time elements Kn

l and Kn
r , and boundary faces Sbou

which connect space-time elements Kn
l to the boundary ∂E . The union of

all faces in the space-time domain En
h is represented as Γ = Γint∪Γbou, with

Γint the union of interior faces and Γbou the union of boundary faces. The
union of boundary faces Γbou := ΓS ∪ ΓB ∪ ΓL further consists of ΓS the
union of free surface faces, ΓB the union of rigid boundary faces and ΓL the
union of lateral boundary faces of the computational space-time domain En

h

which may include a wave maker.

4.3.2 Function spaces

To define the space-time discontinuous Galerkin formulation, we introduce
the finite element function spaces Vh and Σh associated with the space-time
tessellation T n

h which are defined as

Vh := {vh ∈ L2(En
h ) : vh ◦ Gn

K ∈ Pp(K̂), ∀Kn
k ∈ T n

h },
Σh := {τh ∈ L2(En

h ) : τh ◦ Gn
K ∈ [Pp(K̂)]3, ∀Kn

k ∈ T n
h } (4.12)

with L2(En
h ) the space of Lebesgue square integrable functions on En

h and Pp

polynomials of order p. We also introduce the function space Wh associated
with the space-time free surface ΓS which is defined as

Wh := {vh ∈ L2(ΓS) : vh ◦ GK ∈ Pp(Ŝ), ∀S ⊂ ΓS}, (4.13)

with Ŝ a face of K̂ and L2(ΓS) the space of Lebesgue square integrable
functions on the space-time free surface boundary ΓS .

For the space-time discontinuous Galerkin formulation, we approximate
flow fields (u, φ, η) as

φh =

np
∑

j=1

φ̂k,jψk,j , uh =

np
∑

j=1

ûk,jψk,j and ηh =

nq
∑

j=1

η̂k,jϕk,j , (4.14)
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with φh ∈ Vh, uh ∈ Σh and ηh ∈ Wh the approximated wave fields;
(φ̂k,j , ûk,j , η̂k,j) the expansion coefficients; ψk,j ◦Gn

K ∈ Pp(K̂) and ϕk,j ◦Gn
K ∈

Pp(Ŝ) the polynomial basis functions; and, np and nq the number of basis
functions in the space-time elements and at the space-time free surface,
respectively.

To define the space-time variational formulation, we introduce the finite
element function spaces V̄h and Σ̄h associated with the computational space
domain Ωh which are defined as

V̄h := {v̄h ∈ L2(Ωh) : v̄h ◦ FK ∈ Pp(K̂)},
Σ̄h := {τ̄h ∈ L2(Ωh) : τ̄h ◦ FK ∈ [Pp(K̂)]3}, (4.15)

where L2(Ωh) is the space of Lebesgue square integrable functions on Ωh

and Pp the polynomials of order p. We also introduce the function space
W̄h associated with the free surface ∂ΩS which is defined as

W̄h := {v̄h ∈ L2(∂ΩS) : v̄h ◦ FK ∈ Pp(Ŝ)} (4.16)

with Ŝ a face of K̂ and L2(∂ΩS) the space of Lebesgue square integrable
functions on the free surface ∂ΩS .

For the space-time variational formulation, we first approximate the
flow field (u, φ, η) on the computational space domain Ωh at time level tn
as

φ̄n
h =

np
∑

j=1

φ̂n
k,jψ̄k,j , ūn

h =

np
∑

j=1

ûn
k,jψ̄k,j and η̄n

h =

nq
∑

j=1

η̂n
k,jϕ̄k,j (4.17)

with φ̄n
h , ūn

h , η̄n
h the approximated flow fields; (φ̂n

k,i, û
n
k,i, η̂

n
k,j) the expansion

coefficients; ψ̄k,j ◦ FK ∈ Pp(K̂) and ϕ̄k,j ◦ Fn
K ∈ Pp(Ŝ) the polynomial

basis functions; and, np and nq the number of basis functions in the spatial
element and at the free surface, respectively.

Second, we define the polynomial basis functions in time ψn−1 and ψn

as follows

ψn−1 :=
1

2
(1 − ζ0)tn−1 and ψn :=

1

2
(1 + ζ0)tn. (4.18)

Finally, we obtain the approximation of the wave field on each space-time
element Kn

k as

(φh,uh, ηh) = (φ̄n
h , ūn

h , η̄n
h )ψn + (φ̄n−1

h , ūn−1
h , η̄n−1

h )ψn−1 (4.19)
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with φ̄h ∈ V̄h, ūh ∈ Σ̄h and η̄h ∈ W̄h with the restriction that the approxi-
mation is continuous in time but discontinuous in space.

4.3.3 Traces

To define and manipulate the numerical fluxes in the discontinuous Galerkin
formulation, we define the traces of functions v ∈ Vh and vector functions
q ∈ Σh on the element boundary ∂Kn

k taken from inside of the element Kn
k

as

vh|∂Kn
k

:= v− = lim
ǫ↓0

v(x − ǫnK) and qh|∂Kn
k

:= q− := lim
ǫ↓0

q(x − ǫnK)

(4.20)

with nK the unit outward normal vector of the element boundary ∂Kn
k . For

convenience, we also denote the traces v− and q− on ∂Kn
k as vk and qk,

respectively. Now, we define the following trace operators:

Definition 4.3.1 (Average). The averages {{v}} of a scalar function v ∈
Vh and {{q}} of a vector function q ∈ Σh on a face S ∈ Γ are defined as

{{v}} :=
1

2
(vl + vr), {{q}} :=

1

2
(ql + qr) ∀S ∈ Γint; and

{{v}} := vl, {{q}} := ql ∀S ∈ Γbou

(4.21)

with vl and vr the traces of the scalar function vh, and ql and qr the traces
of the vector function qh taken from the inside of the elements Kn

l and Kn
r

which are connected at the face S.

Definition 4.3.2 (Jump). The jumps [[v]] of a scalar function v ∈ Vh and
[[q]] of a vector function q ∈ Σh on a face S ∈ Γ are defined as

[[v]] := vln̄
l
K + vrn̄

r
K, [[q]] := ql · n̄l

K + qr · n̄r
K ∀S ∈ Γint; and

[[v]] := vln̄
l
K [[q]] := ql · n̄l

K ∀S ∈ Γbou

(4.22)

with n̄l
K and n̄r

K the spatial part of the unit space-time normal vectors nl
K =

(nl
t, n̄

l
K) and nr

K = (nr
t, n̄

r
K) of the elements Kn

l and Kn
r , respectively, at the

face S. Note that n̄l
K = −n̄r

K.
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Now the following relation holds between jumps and averages:

∑

K

∫

∂Kn
k

v−(n̄K · q−) d(∂K) =

∫

Γ
[[v]] · {{q}} dS +

∫

Γint

{{v}}[[q]] dS. (4.23)

Further, we can deduce the following properties of trace operators:

[[f ± g]] = [[f ]] ± [[g]], {{f ± g}} = {{f}} ± {{g}},
{{{{f}}}} = {{f}} and [[{{f}}]] = 0 (4.24)

with f, g ∈ Vh or Σh.

4.3.4 Global and local lifting operators

For the standard space-time discontinuous Galerkin formulation, we need
to define the global lifting operator R : (L2(Γ))3 → Σh as

∫

En
h

R(p) · τ dK :=

∫

Γ
p · {{τ}} dS (4.25)

and the local lifting operator RS : (L2(S))3 → Σh as

∫

En
h

RS(p) · τ dK :=

∫

S
p · {{τ}} dS. (4.26)

Since Γ =
⋃S is the union of all faces S, we can relate the global and local

lifting operators as

∫

En
h

R(p) · τ dK =
∑

S

∫

S
p · {{τ}} dS =

∑

S

∫

En
h

RS(p) · τ dK. (4.27)

The global and local lifting operator R(p) and RS(p) can be further
split per space-time element Kn

k as

∫

En
h

R(p) · τ dK =
∑

K

∫

Kn
k

Rk(p) · τk dK and

∫

En
h

RS(p) · τ dK =
∑

K

∫

Kn
k

RS,k(p) · τk dK (4.28)
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with Rk(p) the global lifting operator, RS,k(p) the local lifting operator and
τk the test function per space-time element Kn

k . Now using the arbitrariness
of the test functions τ , we can find that the local lifting operator of a face
S is non zero only w.r.t the elements Kn

l and Kn
r connected to it because

using (4.28) in (4.26), we get

∫

Kn
l

RS,l(p) · τl dK +

∫

Kn
r

RS,r(p) · τr dK =
1

2

∫

S
p · τl dS +

1

2

∫

S
p · τr dS.

(4.29)

Moreover, we obtain the local lifting operators per space-time element Kn
k

from (4.29) as

∫

Kn
k

RS,k(p) · τk =

∫

S

1

2
p · τk dS with S ⊆ ∂Kn

k . (4.30)

The global and local lifting operators can be further related per space-
time element Kn

k using (4.28) and (4.29) in (4.27) as

∑

K

∫

Kn
k

Rk(p) · τk dK =
∑

S

∫

En
h

RS(p) · τ dK

=
∑

S

(

∫

Kn
l

RS,l(p) · τl dK +

∫

Kn
r

RS,r(p) · τr dK
)

=
∑

K

∫

Kn
k

(

∑

S⊂∂Kn
k

RS,k(p)
)

· τk dK (4.31)

and thus,

Rk(p) =
∑

S⊂∂Kn
k

RS,k(p). (4.32)

4.3.5 Primal relation

To obtain the standard space-time DG formulation and the variational
space-time DG formulation, we establish a relation between the approxi-
mations of velocity field uh and the velocity potential φh using the primal
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formulation introduced by Arnold et al. [5] and Brezzi et al. [15]. For the
primal formulation, we use the product rule

∇̄ · (vq) = ∇̄v · q + v(∇̄ · q), (4.33)

with v ∈ Vh and q ∈ Σh, and the divergence theorem in space-time:

∫

Kn
k

∇̄ · (vq) dK =

∫

Kn
k

∇ · (0, vq) dK =

∫

∂Kn
k

nK · (0, v−q−) d(∂K)

=

∫

∂Kn
k

n̄K · (v−q−) d(∂K) (4.34)

with ∇ := (∂t, ∂x, ∂y, ∂z)
T .

To obtain the primal formulation, we discretize the auxiliary equation
u = ∇̄φ in (4.8) by multiplying it with arbitrary test functions τh ∈ Σh and
introducing the approximations of the velocity and potential field uh ∈ Σh

and φh ∈ Vh, respectively. Next, we integrate by parts over each space-
time element Kn

k using (4.33), Gauss’ divergence theorem in space-time
and relation (4.23). We obtain after summation over all elements

∫

En
h

uh · τh dK = −
∫

En
h

φh(∇̄ · τh) dK +

∫

Γ
[[φ̂]] · {{τ}} dS +

∫

Γint

{{φ̂}}[[τ ]] dS

(4.35)

In (4.35), we have introduced a numerical flux for the velocity potential
φ̂ = φ̂(φl, φr) to take into account the multivalued traces φl and φr on each
face S ∈ Γ. The numerical flux φ̂ for elliptic problems (as suggested in
Brezzi et al. [15]) is taken

φ̂ := {{φh}} on S ∈ Γint and φ̂ := φh on S ∈ Γbou. (4.36)

To obtain a primal relation between the velocity and potential field, we
integrate (4.35) again by parts to get

∫

En
h

uh · τhdK =

∫

En
h

∇̄φh · τhdK+

∫

Γ
[[φ̂ − φh]] · {{τ}}dS +

∫

Γint

{{φ̂ − φh}}[[τ ]]dS. (4.37)
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Now, we introduce the definition of global lifting operator (4.25) in (4.37)
and use (4.36) to find

∫

En
h

uh · τh dK =

∫

En
h

(

∇̄φh + R([[φ̂ − φh]])
)

· τh dK. (4.38)

Since test functions τh are arbitrary, we have established the primal relation
between uh and φh to be

uh = ∇̄φh + R([[φ̂ − φh]]). (4.39)

4.4 Standard space-time discontinuous Galerkin
method

4.4.1 Weak formulation

The weak formulation of the velocity potential describing the free surface
waves is obtained by multiplying the continuity equation ∇̄ · u = 0 with
arbitrary test functions v ∈ Vh, introducing the approximated velocity field
uh ∈ Σh, integrating by parts and applying Gauss’ divergence theorem
(4.34) in space-time. Summing up over all elements and using relation
(4.23), we obtain

∫

En
h

uh · ∇̄v dK =

∫

Γ
û · [[v]] dS. (4.40)

In the weak formulation (4.40), we have introduced a numerical flux û for
the velocity field as

û · n̄ :=























{{uh}} · n̄ on Γint,

gN on ΓL,

0 on ΓB,

uh · n̄ on ΓS .

(4.41)

Now, we eliminate the velocity field uh from (4.40) using the primal relation
(4.39) and by coupling the kinematic free surface boundary condition in
(4.8) through the numerical flux (4.41) as

û · n̄ = uh · n̄ = ∂zφh = ∂tηh. (4.42)
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The weak formulation (4.40) now becomes

∫

En
h

∇̄φh · ∇̄v dK+

∫

En
h

R([[φ̂ − φh]]) · ∇̄v dK =

∫

Γint

{{∇̄φh}} · [[v]] dS +

∫

Γint

{{R([[φ̂ − φh]])}} · [[v]] dS

+

∫

ΓL

gNv dS +

∫

ΓS

(∂tηh)v dS. (4.43)

K K

Figure 4.2: Sparsity of the global matrix w.r.t element K when using the
global lifting operator R([[φ]]) (left) and the approximate global lifting op-
erator nSRS([[φ]]) (right).

For the space-time DG discretization, it is advantageous to expand and
simplify the global lifting operator in the L.H.S. (4.43) using (4.25) and
(4.36) as

∫

En
h

R([[φ̂ − φh]]) · ∇̄v dK = −
∫

Γint

[[φh]] · {{∇̄v}}dS. (4.44)

Also, the global lifting operator in the R.H.S. of (4.43) is approximated as

{{R([[φh]])}} =
1

2

(

∑

S⊂∂Kn
l

RS,l([[φh]]) +
∑

S⊂∂Kn
l

RS,r([[φh]])

)
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≈ nS

(

RS,l([[φh]]) + RS,r([[φh]])
)

= nSRS([[φh]]). (4.45)

with nS the number of faces of a space-time element. The approximation of
the global lifting operator (4.45) improves the sparsity of the global matrix
resulting from the discretization of (4.43) as depicted in Fig. 4.2. Substi-
tuting (4.44) and (4.45) in (4.43), we obtain the simplified weak formulation

∫

En
h

∇̄φh · ∇̄v dK =

∫

Γint

[[φh]] · {{∇̄v}} dS +

∫

Γint

{{∇̄φh}} · [[v]] dS−
∫

Γint

nS RS([[φh]]) · [[v]]dS +

∫

ΓN

gNvdS +

∫

ΓS

∂tηhdS.

(4.46)

Now it remains to relate the free surface height to the velocity potential
using the dynamic free surface boundary condition. Multiplying the dy-
namic free surface boundary condition in (4.8) with arbitrary test functions
wh ∈ Wh, introducing the approximations ηh and φh, and integrating over
each face S of the free surface ΓS , we obtain

∫

ΓS

(∂tφh + gηh)whdS = 0. (4.47)

The weak formulation (4.46) and (4.47) in the space-time slab En
h are not,

however, coupled to the previous space-time slab En−1
h .

To couple the space-time slab, the last contribution in (4.46) is inte-
grated by parts twice in time on each face S ∈ ΓS of the free surface
boundary, and we obtain after summing up over all free surfaces

∫

ΓS

(∂tη)vhdS =

∫

ΓS

(∂tη)vhdS −
∑

S∈ΓS

∫

∂S
nS,t(η̂ − η−)v−d(∂S) (4.48)

in which nS,t is the temporal component of the outward unit normal vector
nS of the free surface boundary edge ∂S w.r.t. the free surface S ∈ ΓS , η̂
is the numerical flux in time for the wave height η, and η− = limǫ→0 ηh(t−
ǫnS,t). Similarly, we also treat the time derivatives on φ in (4.47) to obtain

∫

ΓS

(∂tφ)whdS =

∫

ΓS

(∂tφ)whdS −
∑

S∈ΓS

∫

∂S
nS,t(φ̂ − φ−)w−d(∂S) (4.49)
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with φ̂ the numerical flux in time for the velocity potential φ. The numerical
fluxes η̂ and φ̂ are defined as

φ̂ :=

{

φ+ on ∂S(t−n−1),

φ− on ∂S\∂S(t−n−1),
and η̂ :=

{

η+ on ∂S(t−n−1),

η− on ∂S\∂S(t−n−1).
(4.50)

Finally, we introduce the bilinear form Bh : Vh × Vh 7→ R as

Bh(φh, v) :=

∫

En
h

∇̄φh · ∇̄v dK −
∫

Γint

[[φ]] · {{∇̄v}} dS −
∫

Γint

{{∇̄φh}} · [[v]] dS

+

∫

Γint

nS

(

RS([[φ]]) · [[v]]
)

dS, (4.51)

the linear form Lh : Vh 7→ R as

Lh(v) :=

∫

ΓN

gNv dS, (4.52)

and substitute (4.48), (4.49) and (4.50) into (4.46) and (4.47). Hence, we
can state the space-time discontinuous Galerkin weak formulation for linear
free surface water waves as the following:
Find a φh ∈ Vh and ηh ∈ Wh such that for all vh ∈ Vh and wh ∈ Wh

Bh(φh, vh) −
(

∂tηh, vh

)

ΓS

−
(

η− − η+, v−
)

ΓS(t−n−1
)
= Lh(vh)

(

∂tφh, wh

)

ΓS

+
(

gηh, wh

)

ΓS

+
(

φ− − φ+, w−
)

ΓS(t−n−1
)
= 0 (4.53)

is satisfied with ΓS(t−n−1) =
⋃

∂S(t−n−1) and (u, v)ΓS
:=

∫

ΓS
u v dS.

4.4.2 Space-time discontinuous Galerkin discretization

To obtain the space-time DG discretization, we first discretize the local
lifting operator RS,k([[φ]]) per space-time element Kn

k . This is done by
expanding the local lifting operator RS,k([[φ]]) as

(RS,k([[φ]]))k =

np
∑

j=1

R̂S,k
k,j ψk,j (4.54)
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and choosing the test function τh in (4.30) as ψk,i, to get

np
∑

j=1

R̂S,k
k,j

∫

Kn
k

ψk,jψk,i dK =
1

2

np
∑

j=1

(

φ̂l,j

∫

S
nl

kψl,jψk,i dS+

φ̂r,j

∫

S
nr

kψr,jψk,i dS
)

, (4.55)

for each face S ∈ Γint ∩ ∂Kn
k , where the ψk,j ’s are the basis functions

and R̂S,k
k,j the expansion coefficients for each component of RS,k([[φ]])k with

k = 1, 2, 3.

The space-time finite element discretization is obtained by substituting
the polynomial expansions for the velocity potential φh, the free surface
height ηh and the local lifting operator RS,k([[φ]]) in space-time discontin-
uous Galerkin weak formulation (4.53), and choosing the test functions vh

and wh as ψk,i and ϕi, respectively. The resulting space-time finite element
discretization for (4.53) is given in (4.92), (4.93) and (4.94), which are pre-
sented in the Appendix 4.8.1. Subsequently, we obtain a linear system of
algebraic equations by eliminating R̂S,k

k,j and η̂n
l,j using the relations (4.55)

and (4.94) into (4.92) and (4.93), and combining them.

With the help of the notations (4.95) introduced in Appendix 4.8.1, the
expansion coefficients of local lifting opertor RS,k for each face S can be
expressed in terms of the expansion coefficients of the velocity potential φh

using (4.55) as

R̂S,k
k =

1

2
(AK,k)−1

(

DS,lk
k φ̂l + DS,rk

k φ̂r

)

. (4.56)

Similarly, we can relate the expansion coefficients η̂n
l and φ̂n

l using (4.94)
as

η̂n
l = −[(HS)−1]nq×nq

(

[GS ]nq×np φ̂
n
l − [FS,φ]nq×1

)

. (4.57)

Substituting (4.92) and (4.93) in the first equation of the (4.53), rearranging

some terms, and eliminating η̂n and R̂S,k
k using the algebraic relations (4.56)

and (4.57); we obtain the following linear algebraic system

LΦn = X (4.58)
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with L the global matrix, Φn the unknown expansion coefficients of velocity
potential and X the right hand side. The global matrix L is defined as

L :=
∑

K

Bkk +
∑

S∈ΓS

[ḠS ]np×nq [(H
S)−1]nq×nq [G

S ]nq×np

∑

S∈Γint

−1

2

(

C ll,S + (C ll,S)T +
nS

4
M ll

ij −
1

2

(

C lr,S + (Crl,S)T +
nS

4
M lr

ij

− 1

2

(

Crl,S + (C lr,S)T +
nS

4
M rl

ij − 1

2

(

Crr,S + (Crr,S)T +
nS

4
M rr

ij

(4.59)

and the right hand side

X =
∑

S∈ΓL

ES,l +
∑

S∈ΓS

(−FS,η + [ḠS ]np×nq [(H
S)−1]nq×nq [F

S,φ]nq×1)

(4.60)

Given φ̂n−1 and η̂n−1, we can construct the linear system LΦn = X and
solve for Φn. Subsequently, we obtain η̂n using (4.57).

4.5 Space-time variational (dis)continuous Galer-
kin method

4.5.1 Variational formulation

For the discrete variational formulation of linear free surface waves, we
introduce the horizontal cross section of the computational flow domain Ωh

as Ω̄h(z). Now, we define the total discrete kinetic energy EKh
and the

total discrete potential energy EPh
in each space-time slab En

h as

EKh
=

∫

En
h

1

2
|uh|2 dK −

∫

ΓL

gNφh dS and EPh
=

∫

ΓS

1

2
gη2

h dS, (4.61)

where

∫

En
h

dK =

∫ tn

tn−1

∫ 0

−H

∫

Ω̄h

dxdydzdt and

∫

ΓS

dS =

∫ tn

tn−1

∫

Ω̄h(z=0)
dxdydt



4.5 Space-time variational (dis)continuous Galerkin method 93

In (4.61), we directly introduce the relation uh = ∇̄φh+R([[φ̂−φh]]) obtained
from the primal relation (4.39). The use of the global lifting operator,
however, does not result into a discretization with a compact stencil. We
therefore redefine the first term of the kinetic energy in (4.61) using local
lifting operators as

EKh
=

∫

En
h

1

2nS

(

∑

S⊂∂Kn
k

(

∇̄φh + nSRS,k([[φ̂ − φh]])
)2

)

dK −
∫

ΓL

gNφhdS

(4.62)

with nS the number of faces of each space-time element Kn
k . The discrete

kinetic energy (4.62) is further expanded as

EKh
=

∫

En
h

1

2
|∇̄φh|2 dK +

∫

En
h

∑

S⊂∂Kn
k

(

∇̄φh · RS,k([[φ̂ − φh]]) dK +

∫

En
h

nS

2

∑

S⊂∂Kn
k

|RS,k([[φ̂ − φh]])|2 dK −
∫

ΓL

gNφh dS, (4.63)

where
∫

ΓL
dS =

∫ tn
tn−1

∫

∂ΩL
dldzdt with l the horizontal coordinate of the

boundary ∂ΩL. Finally, we define the discrete functional for linear free
surfaces as

Lh(φh, φh,s, ηh) =

∫

ΓS

φh,s(∂tηh) dS − (EKh
+ EPh

). (4.64)

To obtain the discrete variational formulation for the linear free surface
waves, we now state the discrete Luke’s variational principle as

δLh(φh, φh,s, ηh) = 0, (4.65)

where φh,s = φh(t, x, y, z = 0) is the approximated velocity potential evalu-
ated at the mean free surface and δLh is the variational derivative defined
as

δLh = lim
ǫ→0

1

ǫ

(

Lh(φh + ǫδφh, φh,s + ǫδφh,s, ηh + ǫδηh) − Lh((φh, φh,s, ηh)
)

(4.66)
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with δφh, δφh,s and δηh the arbitrary variations.
Applying Luke’s variational principle (4.65), and using (4.66) and the

relation

RS,k([[φ̂ − φh + ǫ(δφ̂ − δφh)]]) = RS,k([[φ̂ − φh]]) + ǫRS,k([[δφ̂ − δφh]]),
(4.67)

we get
∫

ΓS

(

φh,s∂t(δηh) − gηhδηh + (∂tηh)δφh,s

)

dS −
∫

En
h

∇̄φh · ∇̄(δφh) dK

−
∫

En
h

∑

S⊂∂Kn
k

(

∇̄φh · RS,k([[δφ̂ − δφh]]) + ∇̄(δφh) · RS,k([[φ̂ − φh]])
)

dK

−
∫

En
h

∑

S⊂∂Kn
k

nS

(

RS,k([[φ̂ − φh]]) · RS,k([[δφ̂ − δφh]])
)

dK

+

∫

ΓL

gNδφh dS = 0 (4.68)

with δφh, δφs,h and δηh the arbitrary variations.
From a computational point of view, the local lifting operators are easier

to compute on the faces of an element rather than on the element itself.
So, we first rearrange the sum over elements in (4.68) into a sum over faces
and use the fact that the local lifting operators are only non-zero in the
elements connected to the face S, to obtain

∫

ΓS

(

φh,s∂t(δηh) − gηhδηh + (∂tηh)δφh,s

)

dS

+

∫

ΓL

gNδφh dS −
∫

En
h

∇̄φh · ∇̄(δφh) dK

−
∑

S∈Γint

(

∫

Kn
l

(

∇̄φh · RS,l([[δφ̂ − δφh]]) + ∇̄(δφh) · RS,l([[φ̂ − φh]])
)

dK

+

∫

Kn
r

(

∇̄φh · RS,r([[δφ̂ − δφh]]) + ∇̄(δφh) · RS,r([[φ̂ − φh]])
)

dK
)

−
∑

S∈Γint

(

∫

Kn
l

nS

(

RS,l([[φ̂ − φh]]) · RS,l([[δφ̂ − δφh]])
)

dK
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+

∫

Kn
r

nS

(

RS,r([[φ̂ − φh]]) · RS,r([[δφ̂ − δφh]])
)

dK
)

−
∑

S∈Γbou

∫

Kn
l

(

∇̄φh · RS,l([[δφ̂ − δφh]]) + ∇̄(δφh) · RS,l([[φ̂ − φh]])
)

dK

−
∑

S∈Γbou

∫

Kn
l

nS

(

RS,l([[φ̂ − φh]]) · RS,l([[δφ̂ − δφh]])
)

dK = 0. (4.69)

In (4.69), we define the numerical flux on the variations δφh as

δφ̂ := {{δφh}} on S ∈ Γint and δφ̂ := δφh on S ∈ Γbou, (4.70)

which follows the definition of numerical flux for φh in (4.36). By using the
definitions (4.36) and (4.70), and the properties in (4.24), we can deduce
the following relations

[[φ̂ − φh]] = −[[φh]] on S ∈ Γint, [[φ̂ − φh]] = 0 on S ∈ Γbou,

[[δφ̂ − δφh]] = −[[δφh]] on S ∈ Γint and [[δφ̂ − δφh]] = 0 on S ∈ Γbou.
(4.71)

We now simplify (4.69) using (4.71) to obtain

∫

ΓS

(

φh,s∂t(δηh) − gηhδηh + (∂tηh)δφh,s

)

dS

+

∫

ΓL

gNδφh dS −
∫

En
h

∇̄φh · ∇̄(δφh) dK

+
∑

S∈Γint

(

∫

Kn
l

(

∇̄φh · RS,l([[δφh]]) + ∇̄(δφh) · RS,l([[φh]])
)

dK

+

∫

Kn
r

(

∇̄φh · RS,r([[δφh]]) + ∇̄(δφh) · RS,r([[φh]])
)

dK
)

−
∑

S∈Γint

(

∫

Kn
l

nS

(

RS,l([[φh]]) · RS,l([[δφh]])
)

dK

+

∫

Kn
r

nS

(

RS,r([[φh]]) · RS,r([[δφh]])
)

dK
)

= 0. (4.72)
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Finally, using the definition of average in (4.21), the definition of the local
lifting operator (4.26) and the arbitrariness of variations, we obtain the
discrete variational formulation of the linear free surface waves as

Find a φ̄n
h ∈ V̄h and η̄n

h ∈ W̄h such that for all δφ̄n
h ∈ V̄h and δη̄n

h ∈ W̄h,
the equations

∫

En
h

∇̄φh · ∇̄(δφh) dK −
∑

S∈Γint

∫

S

(

{{∇̄φh}} · [[δφh]] + {{∇̄(δφh)}} · [[φh]]−

nS{{RS([[φh]])}} · [[δφh]]
)

dS −
∫

ΓL

gNδφh dS −
∫

ΓS

(∂tηh)δφh,s dS = 0

(4.73)

and
∫

ΓS

(

φh,s∂t(δηh) − gηhδηh

)

dS = 0 (4.74)

are satisfied with the end point conditions on the variations as δφh(tn−1) =
δηh(tn−1) = δφh(tn) = δηh(tn) = 0, where the approximations φh and ηh are
defined as in (4.19). To satisfy these end point conditions on the variations,
we define the expansions of variations

δφh = ψnψn−1δφ̄n
h and δη̄h = ψnψn−1δη̄n

h (4.75)

such that they vanish at tn and tn−1 but are non-zero within the space-
time element. In addition, we use the approximations defined in (4.19) for
φh and ηh. These are coupled with the previous space-time domain En−1

h

by imposing the continuity in time. While the variables are a piecewise
continuous linear approximation in time between the two time levels, the
variations are forced to be zero at the end points and are thus defined
differently. The basis and test functions are therefore unequal. For the
harmonic oscillator, such a choice of continuous approximation for variables
and vanishing test functions at the end points in each time interval leads
to the modified mid-point scheme, which is energy-conserving.

4.5.2 Variational finite element discretization

To obtain the variational finite element discretization, we first have to dis-
cretize the local lifting operators RS,k([[φh]]) per space-time element Kn

k .
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Using a similar approximation as given in (4.19) for φh, the local lifting
operator RS,k([[φh]]) is expanded as

RS,k([[φh]]) = R̄n
S,k([[φh]])ψ

n + R̄n−1
S,k ([[φh]])ψ

n−1. (4.76)

with R̄n
S,k([[φh]]) the local lifting operator on the spatial element Kn

k . There-

after, we define the expansion of the local lifting operator R̄n
S,k([[φh]]) akin

to (4.54) as

(R̄n
S,k([[φh]]))k =

np
∑

j=1

R̂S,kn
k,j ψ̄k,j (4.77)

with R̂S,kn
k,j the expansion coefficients for each component of R̄n

S,k([[φh]])k

with k = 1, 2, 3. The discretization of the local lifting operator R̄n
S,k([[φh]])

arises from (4.30) as

np
∑

j=1

R̂S,kn
k,j

∫

Kn
k

ψ̄k,jψ̄k,i dK =
1

2

np
∑

j=1

(

φ̂n
l,j

∫

S
n̄l

kψ̄l,jψ̄k,i dS+

φ̂n
r,j

∫

S
n̄r

kψ̄r,jψ̄k,i dS
)

(4.78)

for S ∈ Γint ∩ ∂Kn
k with ψ̄k,j the basis function.

The space-time variational finite element discretization can now be ob-
tained by substituting the polynomial expansion for the velocity potential
φh, the free surface height ηh and the local lifting operator RS,k([[φ]]) in the
variational formulation (4.73) and (4.74), and using the arbitrariness of the
variations δφ̄n

h , δφ̄s,h and δη̄h. The variations δφh are varied as ψnψn−1ψ̄k,i

for i = 1, . . . , np, and δηh as ψnψn−1ϕ̄l,i for i = 1, . . . , nq such that they van-
ish at tn and tn−1. Further, to simplify the finite element discretization we
use the fact that the basis functions ψn and ψn−1 are independent of space,
the basis functions ψ̄k,i and ϕ̄l,i are independent of time, and the spatial
element Kk does not deform in time to get the following simplifications:

∂tψ̄k,i = 0, ∂tϕ̄l,i = 0, ∇̄ψn = 0 and ∇̄ψn−1 = 0. (4.79)

The resulting finite element discretization for the variational formulation
(4.73) and (4.74) are given in (4.96) and (4.97), which are presented in
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the Appendix 4.8.2. Subsequently, we obtain a linear system of algebraic
equations by eliminating R̂S,kn

k,j η̂n
l,j using the relations (4.78) and (4.97) into

(4.96).
With the help of the notations (4.98) introduced in Appendix 4.8.2, the

expansion coefficients of local lifting opertor Rn
S,k for each face S can be

expressed in terms of the expansion coefficients of the velocity potential φn
h

using (4.77) as

R̂S,kn
k =

1

2
(AK,k)−1

(

D̂S,lk
k φ̂n

l + D̂S,rk
k φ̂n

r

)

. (4.80)

Similarly, we can relate the expansion coefficients η̂n
l and φ̂n

l using (4.97)
with (4.98) as

η̂n
l = (HS)−1

(

LS φ̂n
l + L̄S φ̂n−1

l − H̄S η̂n−1
l ). (4.81)

Eliminating η̂n, R̂S,kn
k and R̂

S,k(n−1)
k from (4.96) using (4.81) and (4.80),

we obtain the following linear algebraic system

LΦn = X (4.82)

with L the global matrix, Φn the unknown expansion coefficients of the
velocity potential, and X the right hand side. The global matrix L is
defined as

L =
∑

K

Bkk −
∑

S∈ΓS

GS(HS)−1LS

∑

S∈Γint

−1

2

(

C ll,S + (C ll,S)T
)

+
nS

4
M ll

ij −
1

2

(

C lr,S + (Crl,S)T
)

+
nS

4
M lr

ij

− 1

2

(

Crl,S + (C lr,S)T
)

+
nS

4
M rl

ij − 1

2

(

Crr,S + (Crr,S)T
)

+
nS

4
M rr

ij ,

(4.83)

and the right hand side X as

X = −
∑

K

B̄kkφ̂n−1
k +

∑

S∈ΓL

ES,l

+
∑

S∈ΓS

GS(HS)−1L̄S φ̂n−1
l +

(

ḠS − GS(HS)−1H̄S
)

η̂n−1
l
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+
∑

S∈Γint

(1

2

(

C̄ ll,S + C̄ ll,S)T
)

− nS

4
M̄ ll

ij

)

φ̂n−1
l +

(1

2

(

C̄ lr,S + (C̄rl,S)T
)

− nS

4
M̄ lr

ij

)

φ̂n−1
r +

(1

2

(

C̄rl,S + (C̄ lr,S)T
)

− nS

4
M̄ rl

ij

)

φ̂n−1
l +

(1

2

(

C̄rr,S + (C̄rr,S)T
)

− nS

4
M̄ rr

ij

)

φ̂n−1
r . (4.84)

Given φn−1
h and ηn−1

h , we can construct the linear system LΦn = X and
solve it for φn

h . Subsequently, we obtain ηn
h using (4.81).

4.5.3 Solving the linear systems (4.58) and (4.82)

The global matrix L of the linear algebraic system has size Nenp × Nenp,
where Ne is the number of elements in the computational domain En

h and
np the number of degrees of freedom per element. It can be divided into
Ne × Ne blocks with size np × np. Further, the number of non-zero block
rows in the global matrix L w.r.t each space-time element Kn

k is directly
dependent on its immediate neighbouring elements connected through the
boundary of ∂Kn

k . Therefore, the global matrix L is of block sparse type
with a compact stencil. Hence, we use a well-tested software tool kit called
PETSc (see [52, 53, 54]) for building and solving the linear system.

This tool kit PETSc, a ”Portable, Extensible Toolkit for Scientific Com-
putation”, consists of a number of sparse matrix storage routines and both
iterative and direct sparse linear solvers. In particular, we use a sequential
block sparse matrix storage routine for building the global matrix L and
a linear solver based on a biconjugate gradient method with ILU precon-
ditioner for solving the linear system LΦn = X (see the manual by Satish
et al. [52]). For building the matrices, PETSc offers a preallocated matrix
storage routine for which we have to specify the number of non zero blocks
in each row of the matrix. We have observed a tremendous increase of
performance by choosing this particular option.
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4.6 Numerical Results

In this section, we present the numerical results obtained using the standard
space-time DG and the variational space-time (dis)continuous Galerkin fi-
nite element schemes, and compare the numerical results with two exact
solutions of the linear wave equations. The numerical implementation is
done for the equations in non-dimensional form. We used the following
scaling:

(x, y, z) 7→ H (x, y, z), t 7→
√

H

g
t, φ 7→ H

√

gH φ and η 7→ H η.

(4.85)

For the sake of testing the space-time DG finite element scheme, we also
consider some exact solutions of the Laplace and Poisson equations. We
compute the L2(Ωh)–norms of the errors in numerical results for the velocity
potential and free surface height as

‖φ − φh‖L2(Ωh) :=
(

∑

K

∫

Kn
k

(φ − φh)
2 dK

)1/2
and (4.86)

‖η − ηh‖L2(ΓS(t−n )) :=
(

∑

S∈ΓS

∫

∂S(t−n )
(η − ηh)

2 d(∂S)
)1/2

, (4.87)

where (φ, η) and (φh, ηh) are the exact and numerical solutions of the ve-
locity potential and free surface wave height, respectively. The order of
accuracy of the numerical scheme can be determined using

order =
(

ln(Error(1)) − ln(Error(2))
)

/
(

ln(h
(1)
K ) − ln(h

(2)
K )

)

, (4.88)

where Error(1) and Error(2) are the errors computed on the meshes with cell

measures h
(1)
K and h

(2)
K , respectively. For all wave simulations, the com-

putational grid size in the z-direction is chosen such that it decreases as
we move from the free surface at z = 0 down to the bottom topography.
This is in line with the harmonic solution in which the amplitude decreases
expenentially going from the rest level at z = 0.
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4.6.1 Poisson equation

Consider the Poisson equation ∇̄2φ = S on Ω = [0, 1]3 which satisfies
the exact solution φ(x̄) = 1 + sin(2πx) sin(2πy) sin(2πz) with source term
S = 12π2 sin(2πx) sin(2πy) sin(2πz) and boundary condition φ = 1 on ∂Ω.

In the space-time DG scheme, we exclude the free surface and include
the source terms to solve the Poisson equation numerically. Figure (4.3)
(a) and (b) shows a plot of the numerical solution φh and a plot of the
difference between exact and numerical solutions, respectively, on a grid of
size 16 × 16 × 16 at z = 0.25. We also compute the L2–error for various
grid sizes and plot the results on a log-log scale as shown in Fig. (4.4). The
results show that the numerical scheme is second order accurate in space
for linear polynomials.
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(a) Numerical solution φh.
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Figure 4.3: Contour plots of (a) the numerical solution φh and (b) the
numerical error φ − φh at z = 0.25. The numerical solution is computed
using a grid of size 16 × 16 × 16 with the space-time DG scheme.

4.6.2 Laplace equation

Consider the Laplace equation ∇̄2φ = 0 on Ω = [0, 1]3 which is satisfied
by the exact solution φ = A cos(kxx + kyy) cosh(kzz) with k2

z = k2
x + k2

y,
kx = 2π, ky = 2π, A = 1 the amplitude, periodic boundary conditions in
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Figure 4.4: L2–error versus grid size on a log-log scale. L2–errors are
computed on grids of size 8×8×8, 16×16×16, 32×32×32 and 64×64×64
with the space-time DG scheme.

the x− and y− directions, and Neumann boundary conditions ∂zφ = 0 at
z = 0 and ∂zφ = A cos(kxx + kyy) sinh(kz) at z = 1.

We numerically solve the Laplace equation on various grids of size Nx×
Ny×Nz with Nx, Ny and Nz the number of elements in all three coordinate
directions. In Tables 4.1 and 4.2, we present the errors of φh in the L2–norm
and the order of accuracy of the numerical scheme.

4.6.3 Harmonic waves

The governing equations for the linear free surface waves in (4.8) satisfy
harmonic wave modes which are obtained as

φ(x, y, z, t) = Al,m cos(kxx + kyy + ωt) cosh(kz(z + H)) (4.89)

on Ω = [0, 1]2 × [−H, 0], where Al,m is the amplitude; H the mean water

depth; kx = 2πl, ky = 2πm, and kz = ±
√

k2
x + k2

y are the wave numbers;

l and m are integers; ω the frequency and the dispersion relation is ω2 =
kz tanh(kzH). The free surface evolution of the harmonic wave modes is
obtained by using the kinematic free surface boundary condition ∂tφ = gη
as

η(x, y, t) = −Al,mω sin(kxx + kyy + ωt) cosh(kzH) at z = 0. (4.90)
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Table 4.1: L2–errors of φh in the solution of the Laplace equation computed
on regular grids (space-time DG scheme).

Grid Cell size Regular grid
Nx × Ny × Nz h L2–error order

8 × 8 × 2 0.785155 2.5342 · 10−04 −
16 × 16 × 4 0.465848 8.9136 · 10−05 2.00
32 × 32 × 8 0.252864 2.3569 · 10−05 2.18
64 × 64 × 16 0.131652 5.9896 · 10−06 2.10

Table 4.2: L2–errors of φh in the solution of the Laplace equation computed
on irregular grids (space-time DG scheme).

Grid Cell size Irregular grid
Nx × Ny × Nz h L2–error order

8 × 8 × 2 0.795757 2.5429 · 10−04 −
16 × 16 × 4 0.470324 9.0512 · 10−05 1.96
32 × 32 × 8 0.255019 2.5272 · 10−05 2.08
64 × 64 × 16 0.132687 7.7551 · 10−06 1.81
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In both the space-time DG and space-time variational schemes, we ini-
tialize two harmonic modes with mean water depth H = 1, (l, m) = (1, 1)
and (1,−1), and amplitudes A1,1 = 2.32 · 10−04 and A1,−1 = 1.12 · 10−04.
The two modes have a time period T = 2.1078 and travel in diagonally
opposite directions. The projections of the initial condition for the velocity
potential and the free surface wave height are shown in Figs. 4.5(a) and
(b). To test the space-time discontinuous Galerkin scheme and space-time
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(a) Velocity potential.
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(b) Free surface wave height.

Figure 4.5: Contour plots of the velocity potential and the free surface wave
height at time t = 0 on an irregular grid of size 32 × 32 × 8.

variational scheme for accuracy, we simulated these harmonic waves for one
time period T on various grids of sizes 8×8×2, 16×16×2, 32×32×4 and
64× 64× 8 with time steps ∆t = T/10, T/20, T/40 and T/80, respectively.
We also compute the errors of the velocity potential and free surface wave
height in the L2–norm and subsequently, determine the order of accuracy
which are presented in Tables. 4.3 and 4.4. The contour plots of the ve-
locity potential and free surface wave height of the numerical simulations
from both schemes are presented in Figs. 4.6 and 4.7. To qualitatively show
the dispersion error and dissipation error of the space-time DG scheme and
space-time variational scheme, we have simulated the harmonic waves for
about 10 time periods. We observe from the Figs. 4.8(a)-(j) that amplitude
of the waves decay when simulated with the space-time DG scheme and
does not decay in the space-time variational scheme.
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Figure 4.6: Contour plots of the velocity potential on the mean free surface
obtained with the space-time variational scheme (left) and the space-time
DG scheme (right). These results are obtained on an irregular grid of size
32 × 32 × 8 with time step ∆t = T/40, where T is the time period of the
harmonic waves.
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Figure 4.7: Contour plots of the free surface wave height obtained with the
space-time variational scheme (left) and the space-time DG scheme (right).
These results are obtained on an irregular grid of size 32×32×8 with time
step ∆t = T/40, where T is the time period of the harmonic waves.
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Table 4.3: L2–errors of the velocity potential and the free surface height at
t = T on a regular grid using (space-time DG scheme).

Grid Velocity potential Free surface height
Nx × Ny × Nz h L2–error order L2–error order

8 × 8 × 2 0.785155 9.0079 · 10−04 − 5.2950 · 10−03 −
16 × 16 × 4 0.465848 1.9761 · 10−04 2.85 1.4053 · 10−03 2.54
32 × 32 × 8 0.252864 4.9046 · 10−05 2.29 3.5070 · 10−04 2.27
64 × 64 × 16 0.131652 1.1961 · 10−05 2.17 8.7284 · 10−05 2.13

Table 4.4: L2–errors of the velocity potential and the free surface height at
t = T on a regular grid (space-time variational scheme).

Grid Cell size Velocity potential Free surface height
Nx × Ny × Nz h L2–error order L2–error order

8 × 8 × 2 0.785155 1.8445 · 10−03 − 2.3505 · 10−02 −
16 × 16 × 4 0.465848 6.1255 · 10−04 2.11 8.2809 · 10−03 2.00
32 × 32 × 8 0.252864 1.9072 · 10−04 1.91 2.4410 · 10−03 2.00
64 × 64 × 16 0.131652 4.9538 · 10−05 2.07 6.3329 · 10−04 2.07
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Figure 4.8: Contour plots of the free surface height obtained using space-
time variational scheme (left) and space-time DG scheme (right). These
results are obtained on an irregular grid of size 16 × 16 × 4 with time step
∆t = T/10, where T is the time period of the harmonic wave. Observe the
decay of wave amplitude for space-time DG schems.
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4.6.4 Linear waves generated by a wave maker

Consider a wave basin Ω = [0, 1]2 × [−H, 0] with solid walls on all sides
except a piston type wave maker on the side at x = 1. Given the normal
velocity of the wave maker as gN = −Akx cos(ωt) cos(kyy) cosh(kz(z +H)),
we construct an exact solution for the velocity potential and free surface
height as

φ(t, x, y, z) = A cos(ωt) cos(kxx) cos(kyy) cosh(kz(z + H)) and

η(t, x, y) = −Aω sin(ωt) cos(kxx) cos(kyy) cosh(kzH) (4.91)

with A the wave amplitude, H the mean water depth, kx = (2l + 1)π/2,
ky = 2mπ, k2

z = (k2
x+k2

y), ω the frequency satisfying the dispersion relation
ω2 = kz tanh(kzH), and l and m are integers.

To simulate the waves generated by a wave maker, we initialize the
flow field (η, φ) with the exact solution, prescribe the normal velocity of
the wave maker at the boundary x = 1 and take the slip flow boundary
conditions at the remaining solid wall boundaries. We set the parameters
H = 1, l = 0, m = 1 and A = 2.32 · 10−04 and simulate the waves for one
time period T = 2π/ω = 2.4763 with time step ∆t = T/10, T/20, T/40 and
T/80 for computational grids of size 8× 8× 2, 16× 16× 4, 32× 32× 8 and
64 × 64 × 16. The simulations were again performed with both the space-
time DG scheme and space-time variational scheme. The numerical results
obtained are compared with the exact solutions and the errors in the L2–
norm are computed to verify the order of accuracy of both schemes. The
errors in the L2–norm and the orders of accuracy are presented in Tables
4.5 - 4.8 for both the velocity potential and the free surface height. The
free surface waves generated by a wave maker are shown in Figs. 4.9(a)-(j)
and 4.10(a)-(j) simulated with the space-time DG scheme and space-time
variational scheme, respectively.

4.7 Concluding Remarks

A novel space-time variational (dis)continuous Galerkin method has been
presented for the irrotational dynamics of linear free surface waves. It is
based on a novel numerical discretization of Luke’s variational principle.
To achieve such a variational formulation, we derived a discrete functional



110 Chapter 4: Space-time Method for Linear Surface Waves

Table 4.5: L2–errors of the velocity potential and the free surface height at
t = T on regular grids with the space-time DG scheme.

Grid Cell size Velocity potential Free surface height
Nx × Ny × Nz h L2–error order L2–error order

8 × 8 × 2 0.785155 3.9801 · 10−04 − 5.0199 · 10−03 −
16 × 16 × 4 0.465848 7.4137 · 10−05 3.22 1.5546 · 10−03 1.69
32 × 32 × 8 0.252864 2.0123 · 10−05 2.13 3.9705 · 10−04 1.97
64 × 64 × 16 0.131652 5.3061 · 10−06 2.04 9.8416 · 10−05 2.01

Table 4.6: L2–errors of the velocity potential and the free surface height at
t = T on irregular grids with the space-time DG scheme.

Grid size Cell size Velocity potential Free surface height
Nx × Ny × Nz h L2–error order L2–error order

8 × 8 × 2 0.795757 3.9649 · 10−04 − 4.9753 · 10−03 −
16 × 16 × 4 0.470324 7.5895 · 10−05 3.14 1.4990 · 10−03 1.73
32 × 32 × 8 0.255019 2.0966 · 10−05 2.10 3.0505 · 10−04 2.30
64 × 64 × 16 0.132687 5.3061 · 10−06 2.08 9.8416 · 10−05 1.63
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Table 4.7: L2–errors of the velocity potential and the free surface height at
t = T on regular grids with the space-time variational scheme.

Grid Cell size Velocity potential Free surface height
Nx × Ny × Nz h L2–error order L2–error order

8 × 8 × 2 0.785155 3.9906 · 10−04 − 8.2652 · 10−03 −
16 × 16 × 4 0.465848 1.0063 · 10−04 2.64 3.4336 · 10−03 1.27
32 × 32 × 8 0.252864 2.1776 · 10−05 2.51 9.7198 · 10−04 1.82
64 × 64 × 16 0.131652 5.4312 · 10−06 2.13 2.4843 · 10−04 1.97

Table 4.8: L2–errors of the velocity potential and the free surface height at
t = T on irregular grids with the space-time variational scheme.

Grid Cell size Velocity potential Free surface height
Nx × Ny × Nz h L2–error order L2–error order

8 × 8 × 2 0.795757 4.0721 · 10−04 − 4.9753 · 10−03 −
16 × 16 × 4 0.470324 1.0595 · 10−04 2.56 1.4990 · 10−03 1.64
32 × 32 × 8 0.255019 2.3249 · 10−05 2.48 3.0505 · 10−04 1.95
64 × 64 × 16 0.132687 5.4312 · 10−06 2.20 9.8416 · 10−05 2.22
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Figure 4.9: Contour plots of the velocity potential φh at the mean free
surface (left) and the free surface height ηh (right) on a regular grid of size
32 × 32 × 8 (Space-time DG scheme).
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Figure 4.10: Contour plots of the velocity potential φh at the mean free
surface (left) and the free surface height ηh (right) on a regular grid of size
32 × 32 × 8 (space-time variational scheme).
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which is analogous to that of the continuum case for linear free surface
waves. The variational discretization preserves the advantageous features
of the space-time DG scheme such as the locality of the discretization.
In addition, it ensured the resulting system to be symmetric leading to a
speed-up in the computation, and conservation of energy and phase space.

For comparison, we considered the space-time DG of van der Vegt and
Xu [65], extended with novel numerical tests in three space dimensions.
The numerical discretization resulting from this method consists of linear
systems of algebraic equations with a compact stencil. It also allowed us
to use efficient sparse matrix storage routines and iterative linear solvers in
the PETSc package. The PETSc package gave a good performance relative
to other methods, such as direct solvers and locally build and optimized
conjugate gradient solvers. We found that preallocation of memory for
the matrix storage rather than a dynamic memory allocation improves the
performance of the package. An extra advantage of PETSc is that the
parallelization is a built-in feature.

The numerical results of the space-time DG and variational schemes
have been compared with exact solutions of linear harmonic free surface
waves in a periodic domain and linear waves generated by a wave maker.
Both schemes show second order accurate results for a linear polynomial
approximation of the wave field. Further, the space-time variational DG
scheme does not show any decay in the amplitude of the waves whereas
the space-time DG scheme shows significant amount of decay in the wave
amplitude. However, the space-time variational DG finite element scheme
shows a large dispersion error. We recommend, therefore, to extend the
space-time variational (dis)continuous Galerkin scheme to nonlinear free
surface waves. Further, investigate the time discretization in the space-time
variational method to improve the dispersion accuracy while preserving the
zero amplitude decay.

4.8 Appendix

4.8.1 Space-time DG discretization

In this Appendix, we present the space-time finite element discretization
of the space-time discontinuous Galerkin weak formulation (4.53) by sub-
stituting the polynomial expansions for the velocity potential φh, the free
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surface height ηh and the local lifting operator RS,k([[φ]]) in (4.53), and
choosing the test functions vh and wh as ψk,i and ϕl,i, respectively.

First, we present the discretization of the bilinear form Bh(φh, v) in
(4.53) is as follows:

Bh(φh, ψi) :=

Ne
∑

k=1

np
∑

j=1

φ̂k,j

∫

Kn
k

∇̄ψk,j · ∇̄ψk,i dK

−
∑

S∈Γint

np
∑

j=1

(

1

2
φ̂l,j

∫

S
ψl,j(n̄

l · ∇̄ψl,i + n̄l · ∇̄ψr,i) dS

+
1

2
φ̂r,j

∫

S
ψr,j(n̄

r · ∇̄ψl,i + n̄r · ∇̄ψr,i) dS
)

−
∑

S∈Γint

np
∑

j=1

(

1

2
φ̂l,j

∫

S

(

(n̄l · ∇̄ψl,j)ψl,i + (n̄r · ∇̄ψl,j)ψr,i

)

dS

+
1

2
φ̂r,j

∫

S

(

(n̄l · ∇̄ψr,j)ψl,i + (n̄r · ∇̄ψr,j)ψr,i

)

dS
)

−
∑

S∈Γint

np
∑

j=1

3
∑

k=1

nS

(

1

2
R̂S,l

k,j

∫

S

(

nl
kψl,jψl,i + nr

kψl,jψr,i

)

dS

+
1

2
R̂S,r

k,j

∫

S

(

nl
kψr,jψl,i + nr

kψr,jψr,i

)

dS
)

.

(4.92)

Second, the discretization of the linear form and the other free surface terms
of the first equation in (4.53) is

Lh(ψi) =
∑

S∈ΓL

∫

S
gNψi dS,

(

∂tηh, ψi

)

ΓS

=
∑

S∈ΓS

nq
∑

j=1

η̂n
l,j

∫

S
(∂tϕl,j)ψl,i dS

and
(

η− − η+, ψi

)

ΓS(t−n−1
)
=

∑

S∈ΓS

nq
∑

j=1

(

η̂n
l,j

∫

∂S(t−n−1
)
ϕl,jψl,i d(∂S)

− η̂n−1
r,j

∫

∂S(t−n−1
)
ϕl,jψl,i d(∂S)

)

. (4.93)
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Finally, the discretization of the second equation in (4.53) is given as

∑

S∈ΓS

np
∑

j=1

(

φn
l,j

∫

S
(∂tψl,j)ϕl,i dS + φ̂n

l,j

∫

∂S(t−n−1
)
ψl,jϕl,i d(∂S)

−φ̂n−1
r,j

∫

∂S(t−n−1
)
ψr,jϕl,i d(∂S) + η̂n

l,j

∫

S
ϕl,jϕl,i dS

)

= 0. (4.94)

To obtain and describe the linear system of algebraic equations resulting
from (4.92) to (4.94), we introduce and use the following matrix and vector
notations:

AK,k
ij :=

∫

Kk

ψk,iψk,jdK, BK,kk
ij :=

∫

Kk

∇̄ψk,i · ∇̄ψk,jdK,

CS,lr
ij :=

∫

S
(n̄l · ∇̄ψl,i)ψr,jdS, DS,lr

k,ij :=

∫

S
nl

kψl,iψr,jdS,

FS,φ
i := φ̂n−1

r,j

∫

∂S(t−n−1
)
ψr,jϕl,i d(∂S), HS

ij :=

∫

S
ϕl,jϕl,i dS,

FS,η
i := η̂n−1

r,j

∫

∂S(t−n−1
)
ϕr,jψl,i d(∂S), ES,l

i :=

∫

Sm

gNψl,idS,

GS
ij :=

∫

S
(∂tψl,j)ϕl,i dS +

∫

∂S(t−n−1
)
ψl,jϕl,i d(∂S),

ḠS
ij :=

∫

S
(∂tϕl,j)ψl,i dS +

∫

∂S(t−n−1
)
ϕl,jψl,i d(∂S),

M ll :=
3

∑

k=1

(

DS,ll
k (AK,l)−1(DS,ll

k )T + DS,lr
k (AK,r)−1(DS,rl

k )T
)

,

M lr :=
3

∑

k=1

(

DS,ll
k (AK,l)−1(DS,rl

k )T + DS,lr
k (AK,r)−1(DS,rr

k )T
)

,

M rl :=
3

∑

k=1

(

DS,rl
k (AK,l)−1(DS,ll

k )T + DS,rr
k (AK,r)−1(DS,lr

k )T
)

,

M rr :=

3
∑

k=1

(

DS,rl
k (AK,l)−1(DS,rl

k )T + DS,rr
k (AK,r)−1(DS,rr

k )T
)

. (4.95)



120 Chapter 4: Space-time Method for Linear Surface Waves

4.8.2 Space-time variational discretization

In this Appendix, we present the space-time variational discretization of
the variational formulation (4.73) and (4.74) by substituting the polynomial
expansion of the velocity potential φh, the free surface height ηh and the
local lifting operator RS,k([[φ]]) (4.76) into the variational formulation (4.73)
and (4.74), and choosing the arbitrariness of the variations δφ̄n

h and δη̄h as
ψnψn−1ψ̄k,i and ψnψn−1ϕ̄l,i, respectively. Now, the space-time variational
discretization of the variational formulation (4.73) using (4.79) is as follows:

∑

K

np
∑

j=1

φ̂n
k,j

∫

Kn
k

(ψn
k )2ψn−1

k (∇̄ψ̄k,j · ∇̄ψ̄k,i) dK+

∑

K

np
∑

j=1

φ̂n−1
k,j

∫

Kn
k

ψn
k (ψn−1

k )2(∇̄ψ̄k,j · ∇̄ψ̄k,i) dK

−
∑

S∈Γint

np
∑

j=1

(

1

2
φ̂n

l,j

∫

S
ψn

l ψ̄l,j

(

ψn
l ψn−1

l (n̄l · ∇̄ψ̄l,i)+

ψn
r ψn−1

r (n̄l · ∇̄ψ̄r,i)
)

dS

+
1

2
φ̂n

r,j

∫

S
ψn

r ψ̄r,j

(

ψn
l ψn−1

l (n̄r · ∇̄ψ̄l,i)+

ψn
r ψn−1

r (n̄r · ∇̄ψ̄r,i)
)

dS
)

−
∑

S∈Γint

np
∑

j=1

(

1

2
φ̂n−1

l,j

∫

S
ψn−1

l ψ̄l,j

(

ψn
l ψn−1

l (n̄l · ∇̄ψ̄l,i)+

ψn
r ψn−1

r (n̄l · ∇̄ψ̄r,i)
)

dS

+
1

2
φ̂n−1

r,j

∫

S
ψn−1

r ψ̄r,j

(

ψn
l ψn−1

l (n̄r · ∇̄ψ̄l,i)+

ψn
r ψn−1

r (n̄r · ∇̄ψ̄r,i)
)

dS
)

−
∑

S∈Γint

np
∑

j=1

(

1

2
φ̂n

l,j

∫

S
ψn

l

(

ψn
l ψn−1

l (n̄l · ∇̄ψ̄l,j)ψ̄l,i+
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ψn
r ψn−1

r (n̄r · ∇̄ψ̄l,j)ψ̄r,i

)

dS

+
1

2
φ̂n

r,j

∫

S
ψn

r

(

ψn
l ψn−1

l (n̄l · ∇̄ψ̄r,j)ψ̄l,i+

ψn
r ψn−1

r (n̄r · ∇̄ψ̄r,j)ψ̄r,i

)

dS
)

−
∑

S∈Γint

np
∑

j=1

(

1

2
φ̂n−1

l,j

∫

S
ψn−1

l

(

ψn
l ψn−1

l (n̄l · ∇̄ψ̄l,j)ψ̄l,i+

ψn
r ψn−1

r (n̄r · ∇̄ψ̄l,j)ψ̄r,i

)

dS

+
1

2
φ̂n−1

r,j

∫

S
ψn−1

r

(

ψn
l ψn−1

l (n̄l · ∇̄ψ̄r,j)ψ̄l,i+

ψn
r ψn−1

r (n̄r · ∇̄ψ̄r,j)ψ̄r,i

)

dS
)

−
∑

S∈Γint

np
∑

j=1

3
∑

k=1

nS

(

1

2
R̂S,ln

k,j

∫

S
ψn

l

(

ψn
l ψn−1

l nl
kψ̄l,jψ̄l,i+

ψn
r ψn−1

r nr
kψl,jψr,i

)

dS

+
1

2
R̂S,rn

k,j

∫

S
ψn

r

(

ψn
l ψn−1

l nl
kψr,jψl,i+

ψn
r ψn−1

r nr
kψr,jψr,i

)

dS
)

−
∑

S∈Γint

np
∑

j=1

3
∑

k=1

nS

(

1

2
R̂S,ln−1

k,j

∫

S
ψn−1

l

(

ψn
l ψn−1

l nl
kψ̄l,jψ̄l,i+

ψn
r ψn−1

r nr
kψ̄l,jψ̄r,i

)

dS

+
1

2
R̂S,rn−1

k,j

∫

S
ψn−1

r

(

ψn
l ψn−1

l nl
kψ̄r,jψ̄l,i+

ψn
r ψn−1

r nr
kψ̄r,jψ̄r,i

)

dS
)
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−
∑

S∈ΓL

np
∑

j=1

∫

S
gNψn

l ψn−1
l ψ̄l,i dS

−
∑

S∈ΓS

np
∑

j=1

η̂n
l,j

∫

S
ψn

l ψn−1
l (∂tψ

n
l,j)ψ̄l,iϕ̄l,j dS

−
∑

S∈ΓS

np
∑

j=1

η̂n−1
l,j

∫

S
ψn

l ψn−1
l (∂tψ

n−1
l )ψ̄l,iϕ̄l,j dS = 0. (4.96)

Next, the discretization of (4.74) is

∑

S∈ΓS

np
∑

j=1

φ̂n
l,j

∫

S
ψn

l

(

∂t(ψ
n
l ψn−1

l )
)

ϕ̄l,iψ̄l,j dS+

∑

S∈ΓS

np
∑

j=1

φ̂n−1
l,j

∫

S
ψn−1

l

(

∂t(ψ
n
l ψn−1

l )
)

ϕ̄l,iψ̄l,j dS−

∑

S∈ΓS

np
∑

j=1

gη̂n
l,j

∫

S
(ψn

l )2ψn−1
l ϕ̄l,iψ̄l,j dS

∑

S∈ΓS

np
∑

j=1

gη̂n−1
l,j

∫

S
ψn

l (ψn−1
l )2ϕ̄l,iψ̄l,j dS = 0. (4.97)

To obtain and describe the linear system of algebraic equations from
(4.96) and (4.97), we introduce and use the following matrix and vector
notations:

AK,k
ij :=

∫

Kn
k

ψ̄k,iψ̄k,j dK,

BK,kk
ij :=

∫

Kn
k

(ψn
k )2ψn−1

k ∇̄ψ̄k,i · ∇̄ψ̄k,j dK,

B̄K,kk
ij :=

∫

Kn
k

(ψn−1
k )2ψn

k ∇̄ψ̄k,i · ∇̄ψ̄k,j dK,

CS,lr
ij :=

∫

S
ψn

l ψn−1
l ψn

r (n̄l · ∇̄ψl,i)ψr,jdS,

C̄S,lr
ij :=

∫

S
ψn

l ψn−1
l ψn−1

r (n̄l · ∇̄ψl,i)ψr,jdS,
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D̂S,lr
k,ij :=

∫

S
nl

kψ̄l,iψ̄r,jdS,

DS,lr
k,ij :=

∫

S
nl

kψ
n
l ψn−1

l ψn
r ψ̄l,iψ̄r,jdS,

D̄S,lr
k,ij :=

∫

S
nl

kψ
n
l ψn−1

l ψn−1
r ψ̄r,jψ̄l,idS,

GS
ij :=

∫

S
ψn

l ψn−1
l (∂tψ

n
l )ψ̄l,iϕ̄l,j dS,

ḠS
ij :=

∫

S
ψn

l ψn−1
l (∂tψ

n−1
l )ψ̄l,iϕ̄l,j dS,

LS
ij :=

∫

S
ψn

l

(

∂t(ψ
n
l ψn−1

l )
)

ϕ̄l,iψ̄l,j dS,

L̄S
ij :=

∫

S
ψn−1

l

(

∂t(ψ
n
l ψn−1

l )
)

ϕ̄l,iψ̄l,j dS,

HS
ij :=

∫

S
(ψn

l )2ψn−1
l ϕ̄l,iϕ̄l,j dS,

H̄S
ij :=

∫

S
(ψn−1

l )2ψn
l ϕ̄l,iϕ̄l,j dS,

ES,l
i :=

∫

Sm

gNψn
l ψn−1

l ψl,idS,

M ll :=
3

∑

k=1

(

DS,ll
k (AK,l)−1(D̂S,ll

k )T + DS,lr
k (AK,r)−1(D̂S,lr

k )T
)

,

M lr :=

3
∑

k=1

(

DS,ll
k (AK,l)−1(D̂S,rl

k )T + DS,lr
k (AK,r)−1(D̂S,rr

k )T
)

,

M rl :=
3

∑

k=1

(

DS,rl
k (AK,l)−1(D̂S,ll

k )T + DS,rr
k (AK,r)−1(D̂S,lr

k )T
)

,

M rr :=
3

∑

k=1

(

DS,rl
k (AK,l)−1(D̂S,rl

k )T + DS,rr
k (AK,r)−1(D̂S,rr

k )T
)

,

M̄ ll :=
3

∑

k=1

(

D̄S,ll
k (AK,l)−1(D̂S,ll

k )T + D̄S,lr
k (AK,r)−1(D̂S,lr

k )T
)

,
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M̄ lr :=
3

∑

k=1

(

D̄S,ll
k (AK,l)−1(D̂S,rl

k )T + D̄S,lr
k (AK,r)−1(D̂S,rr

k )T
)

,

M̄ rl :=
3

∑

k=1

(

D̄S,rl
k (AK,l)−1(D̂S,ll

k )T + D̄S,rr
k (AK,r)−1(D̂S,lr

k )T
)

,

M̄ rr :=
3

∑

k=1

(

D̄S,rl
k (AK,l)−1(D̂S,rl

k )T + D̄S,rr
k (AK,r)−1(D̂S,rr

k )T
)

. (4.98)

Given φn−1
h and ηn−1

h , we can construct the linear system LΦn = X and
solve it for φn

h . Subsequently, we obtain ηn
h using (4.81).



Chapter 5
Conclusions and
Recommendations

The main objective of the present research was to develop a stable, ef-
ficient and accurate numerical scheme for shallow and deep water waves
that is suitable for deforming grids and thus time dependent boundaries.
To achieve this goal, we have used a space-time discontinuous Galerkin fi-
nite element method. The motivation for using this method is that it does
not distinguish between space and time, and therefore provides flexibility to
accommodate time dependent boundaries. Thus, our research has focused
on developing and testing a space-time discontinuous Galerkin scheme for
nonlinear shallow water waves in Chapters 2 and 3, and for linear free sur-
face gravity water waves in Chapter 4. We now present our conclusions and
recommendations for future research. This will be presented in two parts in
accordance with our research objectives: (i) modeling shallow water waves
and (ii) modeling linear free surface water waves. In addition, we discuss
to what extent we have achieved the milestones set in Chapter 1.

5.1 Modeling shallow water waves

In Chapter 2, we presented a novel space-time discontinuous Galerkin finite
element discretization for the nonlinear (rotational) shallow water equations
over a irregular bottom topography. The novel aspects of this discretization
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are:

(i) Local application of the numerical dissipation operator around bores
and hydraulic jumps with the help of a discontinuity detector. As a
consequence, we can preserve the accuracy of the numerical scheme in
smooth regions of the wave field and suppress the spurious oscillations
around discontinuities and sharp gradients.

(ii) The bottom topography is approximated in such a way that it is
smooth and piecewise continuous. This helps to preserve exactly the
steady rest state of a lake at the discrete level. In practice, such
property ensures that the numerical scheme does not produce any
undesirable artificial flow near to the steady rest state.

(iii) The numerical HLLC flux is unified in space and time, which makes
it applicable to all the faces of a space-time finite element.

The space-time DG discretization of the shallow water equations results
in a set of nonlinear algebraic equations. These are solved by integrating in
pseudo-time until a steady state is reached in pseudo-time. The key feature
of the pseudo-time integration method is that its CFL pseudo-time step is
local, i.e. the pseudo-time step can vary per space-time finite element. This
feature improves convergence to a steady state solution in pseudo-time even
on non-uniform grids with varying cell sizes. Furthermore, we propose to
combine the pseudo-time integration method with the multi-grid solution
techniques developed by Klaij et al. [31] in the near future to increase the
convergence to steady state in pseudo-time. Thus, we have developed an
efficient space-time discontinuous Galerkin finite element scheme for shallow
water waves and achieved the first mile stone set for modeling shallow water
waves.

Having obtained a space-time DG finite element scheme for the shallow
water equations, we considered the verification and validation of the scheme
through a number of test cases. The test cases range from simple exact so-
lutions to experiments supported by shallow water theory. The scheme was
first verified against exact solutions for its accuracy. Next, it was verified
for wave dispersion and dissipation errors. This was done by conducting a
discrete Fourier analysis of the space-time DG discretization.

To demonstrate the applicability of the numerical scheme for problems
arising in geophysical fluid dynamics and problems with deforming grids, we
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considered Kelvin and Poincaré waves in a rectangular and circular basin,
and harmonic waves generated by a linear wave maker in a wave basin,
respectively. These tests failed for traditional zero normal flow boundary
condition at solid walls. This has lead to investigate and devise new bound-
ary conditions for solid walls, and they have proved crucial to accurately
capture these waves.

An important theoretical aspect of shallow water waves is that they con-
serve energy and potential vorticity in the smooth parts of the wave field,
and that they dissipate energy and may generate potential vorticity in the
presence of bores. In order to validate this, we considered test cases consist-
ing of bores that dissipate energy non uniformly across the bore and con-
sequently generate vorticity. The present numerical scheme has captured
this bore-vortex phenomena in good agreement with its anomaly. Finally,
the numerical scheme is validated, qualitatively and quantitatively, against
a laboratory experiment in which oblique hydraulic jumps are formed in
super critical steady state flows. Having successfully tested these cases
with our numerical scheme, we can say that the second milestone has been
achieved.

The third and last milestone set for modeling shallow water waves is to
capture the complicated phenomenon of flooding and drying. To capture
this phenomenon in the space-time discontinuous Galerkin scheme, we first
considered to model flooding and drying on simple (rectangular) domains
in which the shoreline is assumed to be single valued with respect to a fixed
reference line roughly parallel to the shoreline. The fixed reference line is
typically choosen as the opposite boundary of the shoreline. At the shore-
line, the zero water depth condition is satisfied by constraining the slope of
the water depth. Further to accurately predict the movement of the shore
line, we have chosen to approximate the wave field in primitive variables
(h, u, v) instead of the conservative variables (h, hu, hv). This helped to
accurately resolve the velocity of the water particles at the shoreline and
subsequently, the movement of the shoreline. Although the initial tests
were encouraging but we are facing the following numerical difficulties:

(i) Artificial numerical dissipation applied around the bores does not
guarantee the non-negativity of the water depth. This poses a prob-
lem when bores are near to the shore line boundary. However, initial
tests for smooth cases were encouraging, cf. Ambati [2].
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(ii) Slope limiters are commonly used to preserve positivity of the water
depth (see Bokhove [12]) but in our space-time DG finite element
scheme the slope limiters stall the convergence of the pseudo-time
integration to steady state.

(iii) It is difficult to handle the mesh deformation caused by the moving
shore line boundary and by the possibility of merging and emerging
dry patches on an irregular topography.

In order to deal with these difficulties, further research is necessary.

Based on the present research for shallow water waves, we recommend
the following:

1. To exactly preserve a steady rest state at the discrete level, we have
choosen a smooth approximation of the topography over the com-
putational domain. However, a discontinuous approximation of the
topography which can preserve a steady rest state at the discrete level
in a space-time discontinuous Galerkin discretization is recently pre-
sented by Rhebergen et al. [50]. Such a discretization helps to deal
with a discontinuous topography in practical applications. Further,
it will be useful in modeling the sediment morphological evolution of
sea and river beds, cf. Tassi et al. [58].

2. Implementing multi-grid algorithms will further improve the efficiency
of the implicit space-time DG finite element scheme and will make the
scheme more economical to use for practical applications.

3. We strongly recommend to use the polynomial approximation of the
primitive variables (h, u, v) in the shallow water equations instead of
the conservative variables (h, hu, hv). This is particularly advanta-
geous for the flooding and drying phenomenon as the velocity field
will be available at the shore line where the water depth tends to zero.
We have also observed that the use of primitive variables accelerates
the rate of convergence of the pseudo-time integration method.

4. We also recommend investigating either a positivity preserving nu-
merical dissipation or a positivity preserving slope limiter that does
not stall the convergence of the pseudo-time integration.
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We hope the recommendations can pave the way for capturing the flood-
ing and drying phenomenon by the use of a space-time DG finite element
discretization.

5.2 Modeling linear free surface water waves

In Chapter 4, we first presented the space-time discontinuous Galerkin finite
element discretization for the linear free surface gravity wave equations and
verified the resulting numerical scheme against exact solutions. The salient
features of this discretization are

(i) Eliminating the velocity field by using a primal formulation and global
lifting operators. This has significantly reduced the number of degrees
of freedom needed for the velocity field.

(ii) Approximating the global lifting operator on a face with its local
counterpart lifting operator of the respective face. As a consequence,
the discretization results in a linear algebraic system of equations with
a compact stencil.

(iii) Coupling the kinematic and dynamic free surface boundary condi-
tions to the weak formulation of the potential flow equation. This is
done through the numerical flux at the free surface and it ensures the
stability of the resulting numerical scheme.

This accomplished the first mile stone that was set for modeling the deep
water waves.

Next, we presented a novel space-time variational (dis)continuous Galer-
kin method for linear free surface waves. The novelty of this method is
the discrete variational formulation based on Luke’s variational principle
instead of a weak formulation. Such a variational formulation has resulted
in a numerical scheme which shows no decay in the amplitude of the linear
harmonic waves in a periodic domain and harmonic waves generated in
a wave basin. Further, the numerical scheme has all the salient features
that were mentioned for the space-time discontinuous Galerkin method.
However, the space-time variational (dis)continuous Galerkin scheme shows
a larger dispersion error. This concludes the achievement of the second mile
stone for the modeling of linear free surface waves.
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The linear system of algebraic equations resulting from the discretiza-
tion of both the space-time discontinuous Galerkin method and the space-
time variational (dis)continuous Galerkin method has a sparse global ma-
trix. The sparsity of the global matrix is limited by the maximum number
of neighboring elements to any given element in the computational domain.
More precisely, the global matrix can be divided into block rows with each
block row corresponding to an element in the computational domain. The
number of non-zero blocks in a block row is equal to the number of neigh-
boring elements of that element. Such a block sparse matrix structure has
drawn our attention to the PETSc package [53, 52, 54] designed to construct
and solve linear systems of equations. The PETSc package has a large suite
of efficient sparse matrix storage routines and sparse linear solvers with an
added advantage of parallelization. Among them, the block matrix storage
routine of the PETSc package is the best choice for building the present
linear system of equations. Biconjugate gradient and conjugate gradient
solvers with ILU preconditioners are chosen to solve the linear system of
equations resulting from space-time DG and space-time variational meth-
ods. These choices improved the performance of our numerical code and
saved a significant amount of time in building our global system.

The space-time DG finite element scheme for linear free surface waves
was verified by comparing the numerical results with two exact solutions,
one for linear harmonic waves propagating in a periodic domain and an-
other for waves generated by a wave maker in a wave basin. Finally, we
conclude that the space-time finite element scheme for linear free surface
waves combined with the PETSc package has resulted in a fast, accurate
and stable numerical scheme. Thus, we have achieved the milestone set for
modeling deep water waves in Chapter 1.

Based on the present research work for linear free surface waves, we
recommend the following:

1. Space-time variational discontinuous Galerkin scheme is advantageous
for the long time simulations of linear free surface waves with no de-
cay in the amplitude of the waves which indicates better energy con-
servation then the scheme proposed by van der Vegt and Xu [65].
Hence, the extension of this scheme to nonlinear free surface waves
will be useful for practical applications. The scheme, however, needs
improvement in minimizing the dispersion error in the numerical sim-
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ulations which can be achieved by investigating better time discretiza-
tions.

2. The performance of the developed numerical schemes depends largely
on the sparse matrix storage routines. To gain further improvements
in performance, it is recommended that the memory for the matrix
storage be preallocated rather than the use of the dynamic memory
allocation.

3. If p adaptivity is required, then we recommend using the sparse ma-
trix storage routine of PETSc since the block sparse matrix storage
routine requires the same block size for each block row of the global
matrix.

4. For practical applications, it is useful to parallelize the present nu-
merical scheme since a parallelized version of PETSc is available.

5. We recommend the extension of the present numerical scheme to non-
linear free surface waves by developing an efficient nonlinear solver
using the pseudo-time integration method in combination with multi-
grid technique instead of the Newton method used by van der Vegt
and Xu [65].





Bibliography

[1] B. Akers, Shallow water flow through a contraction, GFD Fellowship
program 2005, Woods Hole Oceanographic Institution, 2005.
http://gfd.whoi.edu/proceedings/2005/PDFvol2005.html

[2] V.R. Ambati, Flooding and drying in discontinuous Galerkin
discretizations of shallow water equations. ECCOMAS
Egmond aan Zee 2006, European Conference on CFD, 2006.
http://proceedings.fyper.com/eccomascfd2006

[3] V.R. Ambati and O. Bokhove, Space-time discontinuous Galerkin fi-
nite element method for shallow water flows, J. Comput. Appl. Math.
204(2), 452–462, 2007.

[4] V.R. Ambati and O. Bokhove, Space-time discontinuous Galerkin dis-
cretization of rotating shallow water equations, J. Comput. Phys.
225(2), 1233–1261, 2007.

[5] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analy-
sis of discontinuous Galerkin methods for elliptic problems, SIAM J.
Numer. Anal. 39(5), 1749–1779, 2002.

[6] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A
fast and stable well-balanced scheme with hydrostatic reconstruction
for shallow water flows, SIAM J. Sci. Comp. 25, 2050–2065, 2004.

http://gfd.whoi.edu/proceedings/2005/PDFvol2005.html
http://proceedings.fyper.com/eccomascfd2006


134 BIBLIOGRAPHY

[7] E. Audusse and M.-O. Bristeau, A well-balanced positivity preserving
“second-order” scheme for shallow water flows on unstructured grids.
J. Comp. Phys. 206, 311–333, 2006.

[8] K.J. Bai and J.W. Kim, A finite element method for free surface flow
problems, Theor. Appl. Mech., 1(1), 1–27, 1995.

[9] P. Batten, N. Clarke, C. Lambert and D.M. Causon, On the choice
of wavespeeds for the HLLC Riemann solver, SIAM J. Sci. Comput.
18(6), 1553–1570, 2997.

[10] J.T. Beale, A Convergent Boundary Integral Method for Three-
Dimensional Water Waves, Math. Comp., 70, 977–1029, 2001.

[11] O. Bokhove, Flooding and drying in finite-element Galerkin discretiza-
tions of shallow water equations. Part I: one dimension, J. Sci. Comput.
22, 47–82, 2005.

[12] O. Bokhove, Flooding and drying in finite-element discretizations of
shallow-water equations. Part II: Two dimensions, Memorandum no.
1684, Department of applied mathematics, University of Twente, The
Netherlands, 2003.

[13] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic
conservation laws: and well-balanced scheme for sources, Frontiers in
Mathematics, Birkhauser, 2004.

[14] F. Bouchut, J. Le Sommer and V. Zeitlin, Frontal geostrophic ad-
justment and nonlinear-wave phenomena in one dimensional rotating
shallow water. Part 2: high-resolution numerical simulations, J. Fluid
Mech. 514, 35–63, 2004.

[15] F. Brezzi, G. Manzini, D. Marini, P. Pietra and A. Russo, Discontin-
uous Galerkin approximations for elliptic problems, Numer. Methods
Partial Differential Eq., 16(4), 365–378, 2000.

[16] J. Broeze, E.F.G. van Daalen and P. J. Zandbergen, A three-
dimensional panel method for nonlinear free surface waves on vector
computers, Comput. Mech., 13, 12–28, 1993.



BIBLIOGRAPHY 135

[17] O. Bühler, On the vorticity transport due to dissipating or breaking
waves in shallow-water flow, J. Fluid Mech. 407, 235–263, 2000.

[18] X. Cai, H.P. Langtangen, B.F. Nielsen and A. Tvieto, A finite element
method for fully nonlinear water waves, J. Comput. Phys., 143 544–
568, 1998.

[19] B. Cockburn, Discontinuous Galerkin methods for convection-
dominated problems, Lecture Notes in Computational Science and En-
gineering, Vol. 9, Springer-Verlag, Berlin, 1999.

[20] B. Cockburn, G.E. Karniadakis and C.-W. Shu, Eds., Discontinuous
Galerkin Methods. Theory, Computation and Applications, Lecture
notes in Computational Science and Engineering, Vol. 11, Springer-
Verlag, Berlin, 2000.

[21] B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin
method for conservation laws V: multidimensional systems, J. Comput.
Phys., 141 199–224, 1998.

[22] B. Cockburn and C.-W. Shu, Runge-Kutta Discontinuous Galerkin
methods for convection-dominated problems, J. Sci. Comput., 16 173–
261, 2001.

[23] W. Craig and C. Sulem, Numerical simulation of gravity waves, J.
Comput. Phys., 108 73–83, 1993.

[24] C. Dawson and J. Proft, Discontinuous and coupled continu-
ous/discontinuous Galerkin methods for the shallow water equations,
Comp. Meth. Appl. Mech. Eng., 191, 421–4746, 2002.

[25] G. Hu, Note on numerical simulation of shallow water, Bristol Univer-
sity, School of Mathematics, Rep. No. AM-02-01, 2002.

[26] J. Jaffre, C. Johnson and A. Szepessy, Convergence of the discontinu-
ous Galerkin method for hyperbolic conservation laws, Math. Models
and Methods in Appl. Sci. 5, 367–386, 1995.

[27] R.S. Johnson, A Modern Introduction to the Mathematical Theory of
Water Waves, Cambridge University Press, Cambridge, 1997.



136 BIBLIOGRAPHY

[28] J.W. Kim and K.J. Bai, A finite element method for two dimensional
water wave problems, Int. J. Numer. Methods Fluids, 30(1), 105–121,
1999.

[29] J.W. Kim, K.J. Bai, R.C. Ertekin, and W.C. Webster, A strongly-
nonlinear model for water waves in water of variable depth – The ir-
rotational Green-Naghdi model, J. Offshore Mech. Arct. Eng., 125(1),
25–32.

[30] C.M. Klaij, J.J.W. van der Vegt and H. van der Ven, Spacetime discon-
tinuous Galerkin method for the compressible NavierStokes equations,
Journal of Comput. Phys., 217(2), 589–611, 2006

[31] C.M. Klaij, M.H. van Raalte, H. van der Ven, and J.J.W. van der Vegt,
h-Multigrid for space-time discontinuous Galerkin discretizations of
the compressible Navier-Stokes equations, Journal of Comput. Phys.,
227(2), 1024–1045, 2007.

[32] G.Klopman. M. Dingemans and E. van Groesen, A variational model
for fully non-linear water waves of Boussinesq type, Proceedings of
20th International Workshop on Water Waves and Floating Bodies,
Spitsbergen, Norway, 2005.

[33] L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon and J.E. Fla-
herty, Shock detection and limiting with discontinuous Galerkin meth-
ods for hyperbolic conservation laws, Appl. Numer. Math. 48, 323–338,
2004.

[34] A. Kurganov and D. Levy, Central-upwind schemes for the Saint-
Venant equations. Math. Modelling and Num. Anal. 36, 397–425, 2002.

[35] H. Lamb, Hydrodynamics, Dover Publications, New York, 1932.

[36] R.J. LeVeque, Numerical methods for conservation laws, Birkhäuser
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Summary

Forecasting water waves and currents in near shore and off shore regions of
the seas and oceans is essential to maintain and protect our environment
and man made structures. In wave hydrodynamics, waves can be classified
as shallow and deep water waves based on its water depth. The mathe-
matical models of these waves are shallow water and free surface gravity
water wave equations which describe the hydrodynamics of waves and cur-
rents near shore and off shore regions of seas and oceans. The complexity
in these models exist as moving boundaries whose position depends on the
solution of the governing equations. For shallow water waves, it is the shore
line boundary where the water depth falls dry and for deep water waves,
it is the free surface which separates the sea or ocean from atmospheric
air. It is often difficult to solve these wave equations analytically while
solving them numerically in an efficient and accurate way is a challenging
task because of the moving boundaries. The numerical challenges are two
fold: one is to develop a numerical method which is accurate and efficient
for deforming grids and the other is to design a numerical algorithm for
the grid adaptation following the moving boundaries. In this thesis, we
aimed at first developing space-time discontinuous Galerkin finite element
schemes for shallow water and free surface gravity water wave equations
which are accurate and efficient for deforming grids.

The shallow water equations are a leading order hydrodynamic model
for coastal waves and currents. This is because they can exhibit the com-
plicated flooding and drying phenomena due to the moving shore line
boundary, and the wave breaking phenomena in the form of bores. A new
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space-time discontinuous Galerkin (DG) discretization is first presented for
the (rotating) shallow water equations over varying topography and fixed
boundaries. We formulated the discretization in an efficient and conser-
vative way with the numerical HLLC flux on the finite element bound-
aries. We also designed a novel way to apply numerical dissipation around
discontinuities, that are present in the form of bores, with the help of
Krivodonova’s discontinuity indicator such that the spurious oscillations
are suppressed. The non-linear algebraic system resulting from the space-
time discretization is solved using a pseudo-time integration method. A
thorough verification of the space-time DG finite element method is un-
dertaken by comparing the numerical and exact solutions. We carried out
a discrete Fourier analysis of the one dimensional linear rotating shallow
water equations to show that the method is unconditionally stable with
minimal dispersion and dissipation error. The numerical scheme is verified
and validated for a number of problems arising in geophysical flows. To
demonstrate that the space-time DG method is particularly suitable for
problems with dynamic grid motion, we simulated nonlinear waves gener-
ated by a wave maker and verified these for low amplitude waves where
linear theory is approximately valid.

Free surface gravity water wave equations is widely used in marine and
offshore engineering to model waves. The mathematical nature of these
equations is complex because it consists of a potential flow equation which
is of elliptic nature and nonlinear free surface boundary conditions which
are hyperbolic in nature. Hence, a space-time discontinuous Galerkin fi-
nite element method is presented for simplified linear free surface grav-
ity water waves. The free surface gravity water wave equations also arise
from Luke’s variational formulation which is associated with the conserva-
tion of energy and phase space, under suitable boundary conditions. This
variational formulation also provided a basis to obtain a novel space-time
variational (dis)continuous Galerkin finite element method. Both the space-
time discontinuous Galerkin and the space-time variational finite element
discretizations result in an algebraic linear system of equations with a very
compact stencil, i.e., the algebraic equations from each element is coupled to
its immediate neighboring elements only. Thus, the linear system of equa-
tions are built using an efficient block sparse matrix storage routine and
solved by using iterative linear solvers using a well-tested PETSc package.
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Numerical schemes are verified for harmonic waves in a periodic domain
and generated in a wave basin.

Extension of the space-time discontinuous Galerkin method for flooding
and drying in shallow water waves and nonlinear free surface evolution of
deep water waves will be the topic of future research.





Samenvatting

Het voorspellen van water golven en stromingen in near-shore en off-shore
gebieden van zeeën en oceanen is essentieel voor het onderhouden en besch-
ermen van ons milieu en gebouwen in deze regios. In de hydrodynam-
ica kunnen golven geclassifiseerd worden als ondiep of diepe water golven,
afhankelijk van de water diepte. De wiskundige modellen die de hydro-
dynamica van deze golven beschrijven zijn de ondiep water vergelijkingen,
in near-shore gebieden en de vrije-oppervlakte gravity water wave vergeli-
jkingen voor de off-shore gebieden. De complexiteit in deze modellen zit
in de bewegende randen van welk de positie afhangt van de oplossing van
het model. Voor de ondiep water golven zitten deze bewegende randen in
de kust lijn waar de water diepte nul wordt en voor de diep water gol-
ven is het de vrije oppervlakte die de zee of oceaan van de lucht scheidt.
Vaak is het moeilijk om deze golf vergelijkingen analytisch op te lossen
terwijl het efficient en nauwkeurig oplossen met numerieke methodes be-
moeilijkt wordt vanwege de bewegende randen. Er zijn twee numerieke
uitdagingen: het ontwikkelen van een numerieke methode die nauwkeurig
en efficient is voor vervormende grids en het ontwerpen van een numerieke
algoritme voor grid adaptatie zodat deze de bewegende randen volgt. In
dit proefschrift hebben wij gestreefd naar het ontwikkelen van ruimte-tijd
discontinue Galerkin eindige elementen methodes voor ondiep water vergeli-
jkingen en vrije oppervlakte gravity wave vergelijkingen die nauwkeurig en
efficient zijn voor vervormende grids.

De ondiep water vergelijkingen zijn een leidende orde hydrodynamische
model voor kust golven en stromingen. Dit komt doordat het model het
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verschijnsel van flooding en drying, als gevolg van een bewegende kustlijn,
alsmede het breken van golven kan simuleren. Een nieuwe ruimte-tijd dis-
continue Galerkin (DG) discretisatie wordt gepresenteerd voor de (rotat-
ing) ondiep water vergelijkingen over varierende topografie en vaste randen.
Wij hebben de discretisatie op een efficiente en conservatieve manier gefor-
muleerd met de HLLC flux op de eindige elementen randen. Ook hebben
we een nieuw manier ontwikkeld om numerieke dissipatie rond discontinu-
iteiten, die optreden in de vorm van brekende golven (bores), toe te passen
met behulp van Krivodonova’s discontinuiteiten detector zodanig dat nu-
merieke schommelingen onderdrukt worden. De niet-lineaire algebraisch
systeem als gevolg van de ruimte-tijd discretisatie wordt opgelost door ge-
bruik te maken van een pseudo-tijdstaps methode. Een uitgebreide verifi-
catie van de ruimte-tijd DG eindige elementen methode wordt ondergaan
door numerieke oplossingen te vergelijken met exacte oplossingen. Ook
hebben we een discrete Fourier analyse uitgevoerd van de één dimensionale
lineaire rotating ondiep water vergelijkingen om te laten zien dat de meth-
ode onvoorwaardelijk stabiel is met minimale dispersie en dissipatie fouten.
De numerieke schema is geverifieerd en gevalideerd voor een aantal prob-
lemen die voorkomen in geofysische stromingen. Om aan te tonen dat de
ruimte-tijd DG methode in het bijzonder geschikt is voor problemen met
dynamische grid bewegingen, hebben we niet-lineaire golven gesimuleerd
die opgewekt worden door een golf maker. Dit hebben we geverifieerd voor
lage amplitude golven waar lineaire theorie bij benadering geldig is.

De vrije oppervlakte gravity water wave vergelijkingen worden uitge-
breid gebruikt in maritiem en off-shore onderzoek. Het wiskundig karakter
van deze vergelijkingen is complex omdat deze bestaan uit een potentiaal
vergelijking die elliptisch is en niet-lineaire vrije oppervlakte rand condities
die hyperbolisch van aard zijn. Derhalve wordt een ruimte-tijd discontinue
Galerkin eindige elementen methode gepresenteerd voor vereenvoudigde
lineaire vrije oppervlak gravity water wave vergelijkingen. De vrije op-
pervlakte gravity water wave vergelijkingen kunnen ook afgeleid worden
uit Luke’s variationele formulatie welk geassocieerd wordt met het behoud
van energie in de fase-ruimte, gegeven geschikte randcondities. Deze varia-
tionele formulatie vormt ook de basis voor een nieuw ruimte-tijd variationele
(dis)continue Galerkin eindige elementen methode. Zowel de ruimte-tijd
discontinue Galerkin en de ruimte-tijd variationele eindige elementen dis-
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cretisaties resulteren in een algebraisch lineaire stelsel van vergelijkingen
met een zeer compact stencil, d.w.z., de algebraische vergelijkingen van
ieder element is gekoppeld alleen aan zijn directe buur elementen. Het lin-
eaire stelsel van vergelijkingen wordt daarom gebouwd gebruik makend van
efficiente block sparse matrix opslag routines en opgelost door gebruik te
maken van iteratieve oplos methodes beschikbaar in het uitgebreid getestte
PETSc pakket. De numerieke methode wordt geverifieerd voor harmonis-
che golven in een periodiek domein en die door een golf maker gegenereerd
worden.

Het uitbreiden van de ruimte-tijd discontinue Galerkin methode voor
flooding en drying in de ondiep water vergelijkingen en voor de beweg-
ing van niet lineaire vrije oppervlaktes van diepe water golven wordt een
toekomstig onderzoeks onderwerp.
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